Multiscale analysis and algorithm of transient electromagnetic scattering from heterogeneous materials

被引:2
作者
Zhang, Yongwei [1 ]
Cao, Liqun [2 ]
Shi, Dongyang [1 ]
Lin, Yanping [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,NCMIS,Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Transient electromagnetic scattering; Heterogeneous materials; The multiscale asymptotic expansion; Finite element method; DEPENDENT MAXWELLS EQUATIONS; FINITE-ELEMENTS; HOMOGENIZATION; SINGULARITIES; PARAMETERS;
D O I
10.1016/j.cam.2021.113427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the multiscale analysis of the scattering problem for three-dimensional time-dependent Maxwell's equations in heterogeneous materials. Firstly, an exact transparent boundary condition is developed to reduce the scattering problem into an initial-boundary value problem in heterogeneous materials. Secondly, the multiscale asymptotic expansions of the solution for the reduced problem and an explicit convergence rate for the approximate solutions are presented. Finally, a multiscale Crank-Nicolson mixed finite element method is proposed where the first order approximation of the Silver-Muller radiation condition is utilized to truncate infinite domain problems. Numerical experiments are then carried out to validate the theoretical results. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Transient Electromagnetic Scattering by Multiple Cavities
    Wood, Aihua W.
    Uber, Richard
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 169 - 170
  • [22] Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation
    Shanker, B
    Ergin, AA
    Aygün, K
    Michielssen, E
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (07) : 1064 - 1074
  • [23] A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials
    Triantafyllou, S. P.
    Chatzi, E. N.
    COMPUTATIONAL MECHANICS, 2014, 54 (03) : 763 - 787
  • [24] A new multiscale computational method for elasto-plastic analysis of heterogeneous materials
    Zhang, H. W.
    Wu, J. K.
    Lv, J.
    COMPUTATIONAL MECHANICS, 2012, 49 (02) : 149 - 169
  • [25] 3D hierarchical multiscale analysis of heterogeneous SMA based materials
    Dehaghani, Peyman Fatemi
    Ardakani, Saeed Hatefi
    Bayesteh, Hamid
    Mohammadi, Soheil
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 118 : 24 - 40
  • [26] Multiscale stochastic finite element modeling of random elastic heterogeneous materials
    Shen, Lihua
    Xu, X. Frank
    COMPUTATIONAL MECHANICS, 2010, 45 (06) : 607 - 621
  • [27] Efficient multiscale modeling of heterogeneous materials using deep neural networks
    Aldakheel, Fadi
    Elsayed, Elsayed S. S.
    Zohdi, Tarek I. I.
    Wriggers, Peter
    COMPUTATIONAL MECHANICS, 2023, 72 (01) : 155 - 171
  • [28] MULTISCALE CONTINUOUS AND DISCONTINUOUS MODELING OF HETEROGENEOUS MATERIALS: A REVIEW ON RECENT DEVELOPMENTS
    Vinh Phu Nguyen
    Stroeven, Martijn
    Sluys, Lambertus Johannes
    JOURNAL OF MULTISCALE MODELLING, 2011, 3 (04) : 229 - 270
  • [29] An Efficient Solution for the Transient Electromagnetic Scattering From Discrete Body of Revolution
    Cheng, Guangshang
    Fan, Zhenhong
    Chen, Rushan
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 670 - 673
  • [30] Multiscale asymptotic analysis and algorithm for the quadratic eigenvalue problem in composite materials
    Ma, Qiang
    Wu, Yuting
    Bi, Lin
    Cui, Junzhi
    Wang, Hongyu
    Chen, Tingyan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (05)