Multiscale analysis and algorithm of transient electromagnetic scattering from heterogeneous materials

被引:2
作者
Zhang, Yongwei [1 ]
Cao, Liqun [2 ]
Shi, Dongyang [1 ]
Lin, Yanping [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,NCMIS,Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Transient electromagnetic scattering; Heterogeneous materials; The multiscale asymptotic expansion; Finite element method; DEPENDENT MAXWELLS EQUATIONS; FINITE-ELEMENTS; HOMOGENIZATION; SINGULARITIES; PARAMETERS;
D O I
10.1016/j.cam.2021.113427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the multiscale analysis of the scattering problem for three-dimensional time-dependent Maxwell's equations in heterogeneous materials. Firstly, an exact transparent boundary condition is developed to reduce the scattering problem into an initial-boundary value problem in heterogeneous materials. Secondly, the multiscale asymptotic expansions of the solution for the reduced problem and an explicit convergence rate for the approximate solutions are presented. Finally, a multiscale Crank-Nicolson mixed finite element method is proposed where the first order approximation of the Silver-Muller radiation condition is utilized to truncate infinite domain problems. Numerical experiments are then carried out to validate the theoretical results. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multilevel Adaptive Algorithm for Multiscale Analysis of Heterogeneous Materials
    Zhang, HongWu
    Liu, Yin
    Zhang, Sheng
    Chen, BiaoSong
    JOURNAL OF ENGINEERING MECHANICS, 2014, 140 (09)
  • [2] WELL-POSEDNESS AND THE MULTISCALE ALGORITHM FOR HETEROGENEOUS SCATTERING OF MAXWELL'S EQUATIONS IN DISPERSIVE MEDIA
    Zhang, Yongwei
    Cao, Liqun
    Shi, Dongyang
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (02) : 235 - 264
  • [3] MULTISCALE MODELLING OF HETEROGENEOUS MATERIALS
    Lamut, Martin
    Korelc, Joze
    Rodic, Tomaz
    MATERIALI IN TEHNOLOGIJE, 2011, 45 (05): : 421 - 426
  • [4] Multiscale analysis of brittle failure in heterogeneous materials
    Eid, Elie
    Seghir, Rian
    Rethore, Julien
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 146
  • [5] A multiscale approach and a hybrid FE-BE algorithm for heterogeneous scattering of Maxwell's equations
    Zhang, Yongwei
    Cao, Liqun
    Feng, Yangde
    Wang, Wu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 460 - 479
  • [6] Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials
    Lloberas-Valls, O.
    Rixen, D. J.
    Simone, A.
    Sluys, L. J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 89 (11) : 1337 - 1366
  • [7] Analysis and numerical solution of transient electromagnetic scattering from overfilled cavities
    Huang, Junqi
    Wood, Aihua
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2006, 1 (06) : 1043 - 1055
  • [8] An Efficient Solution for the Transient Electromagnetic Scattering From a Conductor Coated by Multilayer Thin Materials
    Cheng, G. S.
    Fan, Z. H.
    Tao, S. F.
    Chen, R. S.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 1673 - 1676
  • [9] Transient multiscale thermoelastic analysis of functionally graded materials
    Goupee, Andrew J.
    Vel, Senthil S.
    COMPOSITE STRUCTURES, 2010, 92 (06) : 1372 - 1390
  • [10] ANALYSIS OF TRANSIENT ELECTROMAGNETIC SCATTERING FROM A THREE-DIMENSIONAL OPEN CAVITY
    Li, Peijun
    Wang, Li-Lian
    Wood, Aihua
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (04) : 1675 - 1699