RIGID BUT NOT INFINITESIMALLY RIGID COMPACT COMPLEX MANIFOLDS

被引:10
|
作者
Bauer, Ingrid [1 ]
Pignatelli, Roberto [2 ]
机构
[1] Univ Bayreuth, Math Inst, Bayreuth, Germany
[2] Univ Trento, Dipartimento Matemat, Trento, Italy
基金
欧洲研究理事会;
关键词
rigid complex manifolds; branched or unramified coverings; deformation theory; SURFACES;
D O I
10.1215/00127094-2020-0062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to give for each dimension d >= 2 an infinite series of rigid compact complex manifolds which are not infinitesimally rigid and, hence, to give an exhaustive answer to a problem of Morrow and Kodaira stated in the famous book Complex Manifolds.
引用
收藏
页码:1757 / 1780
页数:24
相关论文
共 50 条
  • [31] On regular separable countably compact ℝ-rigid spaces
    Serhii Bardyla
    Lyubomyr Zdomskyy
    Israel Journal of Mathematics, 2023, 255 : 783 - 810
  • [32] A RIGID SPACE ADMITTING COMPACT-OPERATORS
    SISSON, P
    STUDIA MATHEMATICA, 1995, 112 (03) : 213 - 228
  • [33] STRUCTURE OF COMPACT BONE AND RIGID INTERNAL FIXATION
    UHTHOFF, HK
    DUBUC, F
    UNION MEDICALE DU CANADA, 1970, 99 (10): : 1813 - &
  • [34] A Simple, Compact and Rigid Scanning Tunneling Microscope
    Ge, Wei-feng
    Wang, Ji-hao
    Hou, Yu-bin
    Lu, Qing-you
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2018, 31 (05) : 731 - 734
  • [35] Classification of Linearly Compact Simple Rigid Superalgebras
    Cantarini, Nicoletta
    Kac, Victor G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (17) : 3341 - 3393
  • [36] Closed hyperbolic 3-manifolds are goedesically rigid
    Matveev, VS
    MANUSCRIPTA MATHEMATICA, 2001, 105 (03) : 343 - 352
  • [37] The zero curvature equation for rigid CR-manifolds
    Ezhov, V.
    Schmalz, G.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (04) : 443 - 447
  • [38] RIGID FINITE DIMENSIONAL COMPACTA WHOSE SQUARES ARE MANIFOLDS
    ANCEL, FD
    SINGH, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) : 342 - 346
  • [39] Rigid Body Energy Minimization on Manifolds for Molecular Docking
    Mirzaei, Hanieh
    Beglov, Dmitri
    Paschalidis, Ioannis Ch.
    Vajda, Sandor
    Vakili, Pirooz
    Kozakov, Dima
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (11) : 4374 - 4380
  • [40] The Parameter Rigid Flows on Orientable 3-Manifolds
    Matsumoto, Shigenori
    FOLIATIONS, GEOMETRY, AND TOPOLOGY: PAUL SCHWEITZER FESTSCHRIFT, 2009, 498 : 135 - 139