RIGID BUT NOT INFINITESIMALLY RIGID COMPACT COMPLEX MANIFOLDS

被引:10
|
作者
Bauer, Ingrid [1 ]
Pignatelli, Roberto [2 ]
机构
[1] Univ Bayreuth, Math Inst, Bayreuth, Germany
[2] Univ Trento, Dipartimento Matemat, Trento, Italy
基金
欧洲研究理事会;
关键词
rigid complex manifolds; branched or unramified coverings; deformation theory; SURFACES;
D O I
10.1215/00127094-2020-0062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to give for each dimension d >= 2 an infinite series of rigid compact complex manifolds which are not infinitesimally rigid and, hence, to give an exhaustive answer to a problem of Morrow and Kodaira stated in the famous book Complex Manifolds.
引用
收藏
页码:1757 / 1780
页数:24
相关论文
共 50 条
  • [1] On rigid compact complex surfaces and manifolds
    Bauer, Ingrid
    Catanese, Fabrizio
    ADVANCES IN MATHEMATICS, 2018, 333 : 620 - 669
  • [2] A rigid, not infinitesimally rigid surface with K ample
    Christian Böhning
    Hans-Christian Graf von Bothmer
    Roberto Pignatelli
    Bollettino dell'Unione Matematica Italiana, 2022, 15 : 57 - 85
  • [3] A rigid, not infinitesimally rigid surface with K ample
    Bohning, Christian
    von Bothmer, Hans-Christian Graf
    Pignatelli, Roberto
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2022, 15 (1-2): : 57 - 85
  • [4] Exponential Stabilization of Infinitesimally Rigid Formations
    Park, Myoung-Chul
    Ahn, Hyo-Sung
    2014 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS 2014), 2014, : 36 - 40
  • [5] When is a Planar Rod Configuration Infinitesimally Rigid?
    Lundqvist, Signe
    Stokes, Klara
    Ohman, Lars-Daniel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (01) : 25 - 48
  • [6] Infinitesimally equivariant bundles on complex manifolds
    Bouaziz, Emile
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (03) : 1076 - 1081
  • [7] INFINITESIMALLY RIGID POLYHEDRA .1. STATICS OF FRAMEWORKS
    WHITELEY, W
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 285 (02) : 431 - 465
  • [8] GKM manifolds are not rigid
    Goertsches, Oliver
    Konstantis, Panagiotis
    Zoller, Leopold
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (07): : 3511 - 3532
  • [9] Two dimensional compact simple Riemannian manifolds are boundary distance rigid
    Pestov, L
    Uhlmann, G
    ANNALS OF MATHEMATICS, 2005, 161 (02) : 1093 - 1110
  • [10] COMPACT NEGATIVELY CURVED MANIFOLDS (OF DIM = 3, 4) ARE TOPOLOGICALLY RIGID
    FARRELL, FT
    JONES, LE
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (10) : 3461 - 3463