In vivo neurochemical profiling of rat brain by 1H-[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission

被引:32
作者
van Eijsden, Pieter [3 ]
Behar, Kevin L. [2 ]
Mason, Graeme F. [2 ]
Braun, Kees P. J. [4 ]
de Graaf, Robin A. [1 ]
机构
[1] Yale Univ, Magnet Resonance Res Ctr, Sch Med, Dept Radiol, New Haven, CT 06520 USA
[2] Yale Univ, Magnet Resonance Res Ctr, Sch Med, Dept Psychiat, New Haven, CT 06520 USA
[3] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Neurosurg, Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Child Neurol, Utrecht, Netherlands
关键词
H-1-[C-13] NMR; cerebral metabolism; gamma-aminobutyric acid; glutamate; rat; TRICARBOXYLIC-ACID CYCLE; MAGNETIC-RESONANCE-SPECTROSCOPY; GABA-TRANSAMINASE INHIBITION; C-13; NMR; GLUTAMINE SYNTHESIS; GLUCOSE-METABOLISM; ENERGY-METABOLISM; TCA CYCLE; CORTICAL GABA; CORTEX;
D O I
10.1111/j.1471-4159.2009.06428.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The quantification of excitatory and inhibitory neurotransmission and the associated energy metabolism is crucial for a proper understanding of brain function. Although the detection of glutamatergic neurotransmission in vivo by C-13 NMR spectroscopy is now relatively routine, the detection of GABAergic neurotransmission in vivo has remained elusive because of the low GABA concentration and spectral overlap. Using H-1-[C-13] NMR spectroscopy at high magnetic field in combination with robust spectral modeling and the use of different substrates, [U-C-13(6)]-glucose and [2-C-13]-acetate, it is shown that GABAergic, as well as glutamatergic neurotransmitter fluxes can be detected non-invasively in rat brain in vivo.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 52 条
[1]   A half-volume coil for efficient proton decoupling in humans at 4 Tesla [J].
Adriany, G ;
Gruetter, R .
JOURNAL OF MAGNETIC RESONANCE, 1997, 125 (01) :178-184
[2]  
ALCOLEA A, 1999, P MODELCARE 99 C, P157
[3]   C-13 NMR FOR THE ASSESSMENT OF HUMAN BRAIN GLUCOSE-METABOLISM INVIVO [J].
BECKMANN, N ;
TURKALJ, I ;
SEELIG, J ;
KELLER, U .
BIOCHEMISTRY, 1991, 30 (26) :6362-6366
[4]   DETECTION OF METABOLITES IN RABBIT BRAIN BY C-13 NMR-SPECTROSCOPY FOLLOWING ADMINISTRATION OF [1-C-13]GLUCOSE [J].
BEHAR, KL ;
PETROFF, OAC ;
PRICHARD, JW ;
ALGER, JR ;
SHULMAN, RG .
MAGNETIC RESONANCE IN MEDICINE, 1986, 3 (06) :911-920
[5]   Tricarboxylic acid cycle of glia in the in vivo human brain [J].
Blüml, S ;
Moreno-Torres, A ;
Shic, F ;
Nguy, CH ;
Ross, BD .
NMR IN BIOMEDICINE, 2002, 15 (01) :1-5
[6]   Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR [J].
Boumezbeur, F ;
Besret, L ;
Valette, J ;
Gregoire, MC ;
Delzescaux, T ;
Maroy, R ;
Vaufrey, F ;
Gervais, P ;
Hantraye, P ;
Bloch, G ;
Lebon, V .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2005, 25 (11) :1418-1423
[7]   GLUTAMATE TRANSPORTERS IN GLIAL PLASMA-MEMBRANES - HIGHLY DIFFERENTIATED LOCALIZATIONS REVEALED BY QUANTITATIVE ULTRASTRUCTURAL IMMUNOCYTOCHEMISTRY [J].
CHAUDHRY, FA ;
LEHRE, KP ;
CAMPAGNE, MV ;
OTTERSEN, OP ;
DANBOLT, NC ;
STORMMATHISEN, J .
NEURON, 1995, 15 (03) :711-720
[8]  
Chen W, 2001, MAGN RESON MED, V45, P349, DOI 10.1002/1522-2594(200103)45:3<349::AID-MRM1045>3.0.CO
[9]  
2-8
[10]   Measurement of human tricarboxylic acid cycle rates during visual activation by 13C magnetic resonance spectroscopy [J].
Chhina, N ;
Kuestermann, E ;
Halliday, J ;
Simpson, LJ ;
Macdonald, IA ;
Bachelard, HS ;
Morris, PG .
JOURNAL OF NEUROSCIENCE RESEARCH, 2001, 66 (05) :737-746