A metric characterization of Riemannian submersions

被引:41
作者
Berestovskii, VN
Guijarro, L
机构
[1] Omsk State Univ, Dept Math, Omsk 644077, Russia
[2] Univ Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
关键词
metric fibration; Riemannian submersion; submetry;
D O I
10.1023/A:1006683922481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A map between metric spaces is called a submetry if it maps balls of radius R around a point onto balls of the same radius around the image point. We show that when the domain and target spaces are complete Riemannian manifolds, submetries correspond to C-1,(1) Riemannian submersions. We also study some consequences of this fact, and introduce the notion of submetries with a soul.
引用
收藏
页码:577 / 588
页数:12
相关论文
共 12 条
[1]  
Berestovskii V.N., 1975, SIB MAT ZH, V16, P651
[2]  
BERESTOVSKII VN, 1987, SIBERIAN MATH J+, V28, P552
[3]  
BERESTOVSKII VN, IN PRESS J GEOM ANAL
[4]  
BERESTOVSKII VN, 1989, THESIS NOVOSIBIRSK, P10
[5]  
Besse A. L., 1987, ERGEB MATH GRENZGEB, V3
[6]  
Cheeger J., 1971, J. Differ. Geom., V6, P119, DOI 10.4310/jdg/1214430220
[7]  
EFREMOVIC VA, 1978, SOV MATH DOKL, V19, P824
[8]   Rigidity in non-negative curvature [J].
Guijarro, L ;
Petersen, P .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1997, 30 (05) :595-603
[9]  
GUIJARRO L, IN PRESS PACIFIC J M
[10]  
PERELMAN G, 1994, J DIFFER GEOM, V40, P209