SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING

被引:11
作者
Zhang, Run [1 ,2 ]
Cavallaro, Gabriele [2 ]
Jitsev, Jenia [2 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, Julich, Germany
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
Sentinel-2; super-resolution; distributed deep learning; high performance computing;
D O I
10.1109/IGARSS39084.2020.9323734
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a novel distributed deep learning model for Remote Sensing (RS) images super-resolution. High Performance Computing (HPC) systems with GPUs are used to accelerate the learning of the unknown low to high resolution mapping from large volumes of Sentinel-2 data. The proposed deep learning model is based on self-attention mechanism and residual learning. The results demonstrate that state-of-the-art performance can be achieved by keeping the size of the model relatively small. Synchronous data parallelism is applied to scale up the training process without severe performance loss. Distributed training is thus shown to speed up learning substantially while keeping performance intact.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 14 条
  • [1] Super-Resolving Multiresolution Images With Band-Independent Geometry of Multispectral Pixels
    Brodu, Nicolas
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4610 - 4617
  • [2] Cao Y., ARXIV180503644
  • [3] Del Balso M., 2018, Horovod: fast and easy distributed deep learning in tensorflow
  • [4] Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services
    Drusch, M.
    Del Bello, U.
    Carlier, S.
    Colin, O.
    Fernandez, V.
    Gascon, F.
    Hoersch, B.
    Isola, C.
    Laberinti, P.
    Martimort, P.
    Meygret, A.
    Spoto, F.
    Sy, O.
    Marchese, F.
    Bargellini, P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 120 : 25 - 36
  • [5] Nonparametric Variational Auto-encoders for Hierarchical Representation Learning
    Goyal, Prasoon
    Hu, Zhiting
    Liang, Xiaodan
    Wang, Chenyu
    Xing, Eric P.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5104 - 5112
  • [6] Remote Sensing Image Superresolution Using Deep Residual Channel Attention
    Haut, Juan Mario
    Fernandez-Beltran, Ruben
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9277 - 9289
  • [7] J ulich Supercomputing Centre, 2019, J LARGE SCALE RES FA, V5
  • [8] King DB, 2015, ACS SYM SER, V1214, P1
  • [9] Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network
    Lanaras, Charis
    Bioucas-Dias, Jose
    Galliani, Silvano
    Baltsavias, Emmanuel
    Schindler, Konrad
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 : 305 - 319
  • [10] Deep learning in remote sensing applications: A meta-analysis and review
    Ma, Lei
    Liu, Yu
    Zhang, Xueliang
    Ye, Yuanxin
    Yin, Gaofei
    Johnson, Brian Alan
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 152 : 166 - 177