共 50 条
Enhanced photocatalytic degradation of 4-chlorophenol under visible light over carbon nitride nanosheets with carbon vacancies
被引:5
|作者:
Huang, Zanling
[1
,2
]
Chen, Zhenjie
[1
,2
]
Qayum, Abdul
[1
,2
]
Zhao, Xia
[1
,2
]
Xia, Hong
[1
,2
]
Lu, Fushen
[1
,2
]
Hu, Liangsheng
[1
]
机构:
[1] Shantou Univ, Dept Chem, Shantou 515063, Guangdong, Peoples R China
[2] Shantou Univ, Key Lab Preparat & Applicat Ordered Struct Mat Gu, Shantou 515063, Guangdong, Peoples R China
基金:
中国国家自然科学基金;
关键词:
photocatalysis;
carbon vacancy;
g-C3N4;
4-chlorophenol;
photocatalytic degradation;
G-C3N4;
WATER;
HETEROJUNCTION;
NANOPARTICLES;
TETRACYCLINE;
PERFORMANCE;
REDUCTION;
OXIDATION;
NO;
D O I:
10.1088/1361-6528/ac0eac
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Two-dimensional graphitic carbon nitride (g-C3N4, GCN) is considered as one of the promising visible light-responsive photocatalysts for energy storage and environmental remediation. However, the photocatalytic performance of pristine GCN is restricted by the inherent shortcomings of rapid charge carrier recombination and limited absorption of visible light. Vacancy engineering is widely accepted as the auspicious approach for boosting the photocatalytic activity of GCN-based photocatalysts. Herein, a magnesium thermal calcination method has been developed to reconstruct GCN, in which magnesium serves as a carbon etcher for introducing carbon vacancies and pores into GCN (V-c-GCN). The fabricated V-c-GCN demonstrates excellent photocatalytic performances of degrading hazardous 4-chlorophenol under visible light irradiation benefiting from the improved carrier separating and light absorption ability as well as rich reactive sites. The optimal V-c-GCN sample delivers 2.3-fold enhancement from the pristine GCN. The work provides a tactic to prepare GCN photocatalysts with controllable carbon vacancies and for a candidate for the degradation of organic pollutants from the environment.
引用
收藏
页数:10
相关论文