Ultralow Scattering and Broadband Metasurface Using Phase Adjustable FSS Elements Embedded With Lumped Resistors

被引:29
作者
Li, Chengli [1 ,2 ]
Xu, Zhuang [1 ,2 ]
Lin, Li [1 ,2 ]
Guo, Sai [1 ,2 ]
He, Yun [1 ,2 ]
Miao, Ling [1 ,2 ]
Jiang, Jianjun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2021年 / 20卷 / 05期
基金
中国国家自然科学基金;
关键词
Frequency selective surfaces; Metasurfaces; Resistors; Reflection; Scattering; Absorption; Finite element analysis; Frequency selective surface (FSS); lumped resistors; metasurface; radar cross section (RCS) reduction; ultralow backscattering; ABSORBER; POLARIZATION; COMBINATION; ABSORPTION;
D O I
10.1109/LAWP.2021.3063534
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel phase-cancellation and absorptive metasurface (PCAM) with ultralow scattering and broadband features. The PCAM is formed by two circular frequency selective surface elements with lumped resistors, which can not only reduce reflection amplitudes by transforming the incident waves into heat but also adjust reflection phase responses simultaneously. The two electromagnetic scattering mechanisms, phase cancellation and absorption, cooperate in the same band and single layer. This is the first proposed ultralow backscattering performance where the monostatic radar cross section (RCS) is reduced by more than 20 dB in 5.0-10.9 GHz. Simultaneously, an RCS reduction over 10 dB is achieved at a broad frequency band of 4.1-12.0 GHz under normal incidence. Both the analysis and measurements are demonstrated in detail. The good agreement between simulated and measured results validates the proposed PCAM.
引用
收藏
页码:793 / 797
页数:5
相关论文
共 28 条
[1]   Checkerboard EBG Surfaces for Wideband Radar Cross Section Reduction [J].
Chen, Wengang ;
Balanis, Constantine A. ;
Birtcher, Craig R. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (06) :2636-2645
[2]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[3]   Gradient metasurfaces: a review of fundamentals and applications [J].
Ding, Fei ;
Pors, Anders ;
Bozhevolnyi, Sergey I. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (02)
[4]   Engineering the dispersion of metamaterial surface for broadband infrared absorption [J].
Feng, Qin ;
Pu, Mingbo ;
Hu, Chenggang ;
Luo, Xiangang .
OPTICS LETTERS, 2012, 37 (11) :2133-2135
[5]   Ultrawideband and High-Efficiency Linear Polarization Converter Based on Double V-Shaped Metasurface [J].
Gao, Xi ;
Han, Xu ;
Cao, Wei-Ping ;
Li, Hai Ou ;
Ma, Hui Feng ;
Cui, Tie Jun .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (08) :3522-3530
[6]   Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J].
Genevet, Patrice ;
Capasso, Federico ;
Aieta, Francesco ;
Khorasaninejad, Mohammadreza ;
Devlin, Robert .
OPTICA, 2017, 4 (01) :139-152
[7]   Illusion and cloaking using dielectric conformal metasurfaces [J].
Han, Na ;
Huang, Lingling ;
Wang, Yongtian .
OPTICS EXPRESS, 2018, 26 (24) :31625-31635
[8]   Design of a Dual-Band Electromagnetic Absorber With Frequency Selective Surfaces [J].
He, Yun ;
Feng, Weisen ;
Guo, Sai ;
Wei, Jianfeng ;
Zhang, Yulu ;
Huang, Ze ;
Li, Chengli ;
Miao, Ling ;
Jiang, Jianjun .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (05) :841-845
[9]   Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas [J].
Huang, Yijia ;
Luo, Jun ;
Pu, Mingbo ;
Guo, Yinghui ;
Zhao, Zeyu ;
Ma, Xiaoliang ;
Li, Xiong ;
Luo, Xiangang .
ADVANCED SCIENCE, 2019, 6 (07)
[10]   Broadband Radar Cross-Section Reduction Using AMC Technology [J].
Iriarte Galarregui, Juan Carlos ;
Tellechea Pereda, Amagoia ;
Luis Martinez de Falcon, Jose ;
Ederra, Inigo ;
Gonzalo, Ramon ;
de Maagt, Peter .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (12) :6136-6143