Non-Escaping Points of Zorich Maps

被引:2
作者
Bergweiler, Walter [1 ]
Ding, Jie [2 ]
机构
[1] Christian Albrechts Univ Kiel, Math Seminar, Ludewig Meyn Str 4, D-24098 Kiel, Germany
[2] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
关键词
HAUSDORFF DIMENSION; JULIA SETS; AREA;
D O I
10.1007/s11856-021-2140-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend results about the dimension of the radial Julia set of certain exponential functions to quasiregular Zorich maps in higher dimensions. Our results improve on previous estimates of the dimension also in the special case of exponential functions.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 19 条
[1]   Hyperbolic Dimension of Julia Sets of Meromorphic Maps with Logarithmic Tracts [J].
Baranski, Krzysztof ;
Karpinska, Boguslawa ;
Zdunik, Anna .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (04) :615-624
[2]   ITERATION OF MEROMORPHIC FUNCTIONS [J].
BERGWEILER, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :151-188
[3]   KARPINSKA'S PARADOX IN DIMENSION 3 [J].
Bergweiler, Walter .
DUKE MATHEMATICAL JOURNAL, 2010, 154 (03) :599-630
[4]   On the differentiability of hairs for Zorich maps [J].
Comduehr, Patrick .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 :1824-1842
[5]  
Devaney R.L., 1984, Ergodic Theory Dynam. Systems, V4, P35, DOI 10.1017/S014338570000225X
[6]  
Eremenko A., 1989, ITERATION ENTIRE FUN
[7]  
Falconer K, 1990, MATH FDN APPL
[8]   VARIATIONS OF HAUSDORFF DIMENSION IN THE EXPONENTIAL FAMILY [J].
Havard, Guillaume ;
Urbanski, Mariusz ;
Zinsmeister, Michel .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (02) :351-378
[9]  
IWANIEC T, 2001, GEOMETRIC FUNCTION T