Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes

被引:46
作者
Fu, Haohao [1 ,2 ]
Comer, Jeffrey [3 ,4 ,5 ]
Cai, Wensheng [1 ,2 ]
Chipot, Christophe [3 ,4 ,6 ,7 ]
机构
[1] Nankai Univ, Coll Chem, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Chem, Res Ctr Analyt Sci, Tianjin 300071, Peoples R China
[3] CNRS, Lab Int Associe, F-54506 Vandoeuvre Les Nancy, France
[4] Univ Lorraine, Univ Illinois Urbana Champaign, UMR 7565, F-54506 Vandoeuvre Les Nancy, France
[5] Kansas State Univ, Dept Anat & Physiol, Inst Computat Comparat Med, Nanotechnol Innovat Ctr Kansas State, Manhattan, KS 66506 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Theoret & Computat Biophys Grp, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
DNA TRANSFECTION; SHOCK-WAVES; ULTRASOUND; DELIVERY; PEI;
D O I
10.1021/jz502513w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 28 条
[11]   Structural change in lipid bilayers and water penetration induced by shock waves: Molecular dynamics simulations [J].
Koshiyama, Kenichiro ;
Kodama, Tetsuya ;
Yano, Takeru ;
Fujikawa, Shigeo .
BIOPHYSICAL JOURNAL, 2006, 91 (06) :2198-2205
[12]  
Leighton TG, 1994, ACOUSTIC BUBBLE
[13]   Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms [J].
Lentacker, I. ;
De Cock, I. ;
Deckers, R. ;
De Smedt, S. C. ;
Moonen, C. T. W. .
ADVANCED DRUG DELIVERY REVIEWS, 2014, 72 :49-64
[14]   The collapse of nanobubbles in water [J].
Lugli, F ;
Höfinger, S ;
Zerbetto, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (22) :8020-8021
[15]   An introduction to bubble dynamics [J].
Lugli, Francesca ;
Zerbetto, Francesco .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (20) :2447-2456
[16]   Controlled vesicle deformation and lysis by single oscillating bubbles [J].
Marmottant, P ;
Hilgenfeldt, S .
NATURE, 2003, 423 (6936) :153-156
[17]   The MARTINI force field: Coarse grained model for biomolecular simulations [J].
Marrink, Siewert J. ;
Risselada, H. Jelger ;
Yefimov, Serge ;
Tieleman, D. Peter ;
de Vries, Alex H. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (27) :7812-7824
[18]   Innovation - Healing sound: the use of ultrasound in drug delivery and other therapeutic applications [J].
Mitragotri, S .
NATURE REVIEWS DRUG DISCOVERY, 2005, 4 (03) :255-260
[19]   Therapeutic ultrasound: Its application in drug delivery [J].
Ng, KY ;
Liu, Y .
MEDICINAL RESEARCH REVIEWS, 2002, 22 (02) :204-223
[20]   Ultrasound-induced encapsulated microbubble phenomena [J].
Postema, M ;
Van Wamel, A ;
Lancée, CT ;
De Jong, N .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2004, 30 (06) :827-840