Tails of solutions of certain nonlinear stochastic differential equations driven by heavy tailed Levy motions

被引:23
作者
Samorodnitsky, G [1 ]
Grigoriu, M
机构
[1] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
[3] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
stochastic differential equation; Levy motion; heavy tails; Markov process; stationary distribution; coupling; storage processes;
D O I
10.1016/S0304-4149(03)00002-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe the exact tail behavior of the solutions to certain nonlinear stochastic differential equations driven by Levy motions with regularly varying tails and establish existence and uniqueness of solutions to these equations. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 97
页数:29
相关论文
共 15 条
[1]  
Asmussen S, 1998, ANN APPL PROBAB, V8, P354
[2]  
BERTOIN J., 1998, Levy Processes
[3]  
Billingsley P., 1999, CONVERGENCE PROBABIL
[4]   STORAGE PROCESSES WITH GENERAL RELEASE RULE AND ADDITIVE INPUTS [J].
BROCKWELL, PJ ;
RESNICK, SI ;
TWEEDIE, RL .
ADVANCES IN APPLIED PROBABILITY, 1982, 14 (02) :392-433
[5]   SUBEXPONENTIALITY AND INFINITE DIVISIBILITY [J].
EMBRECHTS, P ;
GOLDIE, CM ;
VERAVERBEKE, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03) :335-347
[6]   WEAK LIMIT-THEOREMS FOR STOCHASTIC INTEGRALS AND STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KURTZ, TG ;
PROTTER, P .
ANNALS OF PROBABILITY, 1991, 19 (03) :1035-1070
[7]  
Lindvall T., 1992, Lectures on the coupling method
[8]  
PETROV V.V., 1995, Limit Theorems of Probability Theory: Sequences of Independent Random Variables
[9]  
Prokhorov Y.V., 1959, THEOR PROBABILITY AP, V4, P201, DOI 10.1137/1104017
[10]  
Protter P., 1991, Stochastic Integration and Differential Equations. A New Approach