Gaussian bare-bones water cycle algorithm for optimal reactivepower dispatch in electrical power systems

被引:116
作者
Heidari, Ali Asghar [1 ]
Abbaspour, Rahim Ali [1 ]
Jordehi, Ahmad Rezaee [2 ]
机构
[1] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
[2] Islamic Azad Univ, Lashtenesha Zibakenar Branch, Dept Elect Engn, Lashtenesha, Iran
关键词
Metaheuristic; Optimal reactive power dispatch; Gaussian bare-bones water cycle algorithm; Power system; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; EVAPORATION RATE; VOLTAGE CONTROL; FLOW; STABILITY; STRATEGY; NONSMOOTH;
D O I
10.1016/j.asoc.2017.04.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Water cycle algorithm (WCA) is one of the efficient metaheuristic optimization algorithms inspired by hydrological cycle in nature. WCA can outperform several robust and efficient metaheuristics in solving optimization problems. Like other metaheuristics, premature convergence and stagnation in local optima can still occur in WCA. In order to mitigate this problem, in this paper, a Gaussian bare-bones WCA (NGBWCA) is proposed and utilized to tackle optimal reactive power dispatch (ORPD) problem in electric power systems. Resistive losses and voltage deviations are the objectives to be minimised. The efficiency of the proposed NGBWCA optimizer is investigated and compared to other well-established metaheuristic optimisation algorithms on IEEE 30, 57 and 118 bus power systems. The experimental results and statistical tests vividly demonstrate the efficiency of the NGBWCA algorithm in solving ORPD problem. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:657 / 671
页数:15
相关论文
共 93 条
[1]   Optimal power flow using particle swarm optimization [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (07) :563-571
[2]   Differential evolution algorithm for optimal reactive power dispatch [J].
Abou El Ela, A. A. ;
Abido, M. A. ;
Spea, S. R. .
ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (02) :458-464
[3]  
[Anonymous], APPL SOFT COMPUT
[4]  
[Anonymous], NEURAL COMPUT APPL
[5]   Artificial bee colony algorithm solution for optimal reactive power flow [J].
Ayan, Kursat ;
Kilic, Ulas .
APPLIED SOFT COMPUTING, 2012, 12 (05) :1477-1482
[6]   Reactive power control using dynamic Particle Swarm Optimization for real power loss minimization [J].
Badar, Altaf Q. H. ;
Umre, B. S. ;
Junghare, A. S. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 41 (01) :133-136
[7]  
Bakare GA, 2005, IEEE POWER ENG SOC, P1916
[8]   Multi-objective optimal reactive power dispatch using multi-objective differential evolution [J].
Basu, M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 82 :213-224
[9]  
Bhattachary A., 2010, INT J ENERGY POWER E, V3, P269
[10]   Optimal power flow using Teaching-Learning-Based Optimization technique [J].
Bouchekara, H. R. E. H. ;
Abido, M. A. ;
Boucherma, M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2014, 114 :49-59