Sets of range uniqueness for multivariate polynomials and linear functions with rank k

被引:1
作者
Halbeisen, Lorenz [1 ]
Hungerbuhler, Norbert [1 ]
Schumacher, Salome [1 ]
Yau, Guo Xian [1 ]
机构
[1] Swiss Fed Inst Technol, Math, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Sets of range uniqueness; polynomials; magic sets; unique range; Vandermonde;
D O I
10.1080/03081087.2021.1922338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a set of functions with a common domain X and a common range Y. A set S subset of X is called a set of range uniqueness (SRU) for F, if for all f, g is an element of F, f [S] = g[S] double right arrow f = g. Let P-n,P-k be the set of all real polynomials in n variables of degree at most k and let L-k(R-n, R-n) be the set of all linear functions f : R-n -> R-n with rank k. We show that there are SRU's for P-n,P-k of cardinality 2((n+k)(k)) - 1, but there are no such SRU's of size 2((n+k)(k)) - 2 or less. Moreover, we show that there are SRU's for L-k(R-n, R-n) of size {2n - 1 if k = 1, 2n - k + 1 ifk > 1, but there are no such SRU's of smaller size.
引用
收藏
页码:5642 / 5660
页数:19
相关论文
共 8 条
[1]   Sets on which measurable functions are determined by their range [J].
Burke, MR ;
Ciesielski, K .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06) :1089-1116
[2]   A model with no magic set [J].
Ciesielski, K ;
Shelah, S .
JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (04) :1467-1490
[3]   SETS ON WHICH AN ENTIRE FUNCTION IS DETERMINED BY ITS RANGE [J].
DIAMOND, HG ;
POMERANCE, C ;
RUBEL, L .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (03) :383-398
[4]  
Dikranjan D., 1994, REND I MAT U TRIESTE, V25, P23
[5]   Magic sets for polynomials of degree n [J].
Halbeisen, Lorenz ;
Hungerbuhler, Norbert ;
Schumacher, Salome .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 :413-441
[6]   Sets and multisets of range uniqueness for polynomials [J].
Halbeisen, Lorenz ;
Hungerbuhler, Norbert ;
Schumacher, Salome .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 589 (589) :39-61
[7]   MAGIC SETS [J].
Halbeisen, Lorenz ;
Lischka, Marc ;
Schumacher, Salome .
REAL ANALYSIS EXCHANGE, 2018, 43 (01) :187-204
[8]  
Xian Yau G., 2020, THESIS ETH ZURICH ZU