Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells

被引:114
作者
Cass, MJ
Qiu, FL
Walker, AB [1 ]
Fisher, AC
Peter, LM
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
关键词
D O I
10.1021/jp026798l
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a Monte Carlo model of electron transport in mesoporous films of TiO2 particles in which electrons execute a random walk through a chain of spherical grains with traps at the surface of the grains. This has been used to simulate transient photocurrents in dye sensitized nanocrystalline solar cells. By comparing our results with a model based on solutions of the continuity equation for the free and trapped electron densities in which the film is treated as a homogeneous medium, we find that necks between grains have a noticeable effect on reducing the photocurrent. Values of an effective electron diffusion coefficient have been deduced by comparing an analytical solution to the continuity equation for the free electrons, in which the traps and back-reaction are ignored, with the numerical results from the Monte Carlo and continuum models. To the authors' knowledge, this is the first time that the influence of the grain connectivity on electron transport has been modeled.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 30 条
[1]   Charge transport model for disordered materials:: Application to sensitized TiO2 -: art. no. 125324 [J].
Anta, JA ;
Nelson, J ;
Quirke, N .
PHYSICAL REVIEW B, 2002, 65 (12) :1-10
[2]   Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: Random flight model [J].
Barzykin, AV ;
Tachiya, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (17) :4356-4363
[3]   Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells [J].
Cao, F ;
Oskam, G ;
Meyer, GJ ;
Searson, PC .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (42) :17021-17027
[4]   Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy [J].
Dloczik, L ;
Ileperuma, O ;
Lauermann, I ;
Peter, LM ;
Ponomarev, EA ;
Redmond, G ;
Shaw, NJ ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (49) :10281-10289
[5]   Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8916-8919
[6]   Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation [J].
Duffy, NW ;
Peter, LM ;
Wijayantha, KGU .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (04) :262-266
[7]   A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (09) :658-662
[8]  
DUFFY NW, 2001, PHOTOVOLTAICS 21ST C
[9]   Spectroscopic determination of electron and mole effective masses in a nanocrystalline semiconductor film [J].
Enright, B ;
Fitzmaurice, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (03) :1027-1035
[10]   Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells [J].
Fisher, AC ;
Peter, LM ;
Ponomarev, EA ;
Walker, AB ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (05) :949-958