Asymmetry of convolution norms on Lie groups

被引:7
作者
Dooley, AH [1 ]
Gupta, SK
Ricci, F
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ S Pacific, Dept Math, Suva, Fiji
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jfan.2000.3573
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that on most connected non-commutative Lie groups there exists a convolution operator which is bounded on L(P) but unbounded on L(q) for every q not belonging to the interval with endpoints 2 and p. Furthermore, the kernel of such an operator can be supported on an arbitrary neighbourhood of the identity. (C) 2000 Academic Press.
引用
收藏
页码:399 / 416
页数:18
相关论文
共 18 条
[1]  
Cowling M., 1979, C MATH, V41, P89
[2]   On norms of trigonometric polynomials on SU(2) [J].
Dooley, A ;
Gupta, SK .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 175 (02) :491-505
[3]   THE CONTRACTION OF K TO NBARM [J].
DOOLEY, AH ;
RICCI, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (03) :344-368
[4]   TRANSFERRING LP MULTIPLIERS [J].
DOOLEY, AH .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (04) :107-136
[5]   ON LP MULTIPLIERS OF CARTAN MOTION GROUPS [J].
DOOLEY, AH ;
GAUDRY, GI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 67 (01) :1-24
[6]  
EYMARD P, 1969, EXPOSE, V367
[7]   SINGULAR-INTEGRALS ASSOCIATED TO THE LAPLACIAN ON THE AFFINE GROUP AX+B [J].
GAUDRY, GI ;
QIAN, T ;
SJOGREN, P .
ARKIV FOR MATEMATIK, 1992, 30 (02) :259-281
[8]   ASYMMETRY OF NORMS OF CONVOLUTION OPERATORS .1. [J].
HERZ, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 23 (01) :11-22
[9]   GENERALIZATION OF NOTION OF FOURIER-STIELTJES TRANSFORM [J].
HERZ, C .
ANNALES DE L INSTITUT FOURIER, 1974, 24 (03) :145-157
[10]   HARMONIC SYNTHESIS FOR SUBGROUPS [J].
HERZ, C .
ANNALES DE L INSTITUT FOURIER, 1973, 23 (03) :91-123