Physical limits to biomechanical sensing in disordered fibre networks

被引:54
作者
Beroz, Farzan [1 ,2 ,3 ]
Jawerth, Louise M. [4 ,5 ]
Muenster, Stefan [4 ,6 ]
Weitz, David A. [5 ,6 ]
Broedersz, Chase P. [1 ,2 ,3 ,7 ]
Wingreen, Ned S. [1 ,8 ]
机构
[1] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08540 USA
[2] Ludwig Maximilian Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[3] Ludwig Maximilian Univ Munich, Ctr NanoSci, D-80333 Munich, Germany
[4] Max Planck Inst Phys Komplexer Syst, Dept Biol Phys, D-01187 Dresden, Germany
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[7] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[8] Princeton Univ, Dept Mol Biol, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
MATRIX STIFFNESS; COLLAGEN; MIGRATION; FORCE; POLARIZATION; MICROSCOPY; DEPENDENCE; RIGIDITY; ADHESION; RHEOLOGY;
D O I
10.1038/ncomms16096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space.
引用
收藏
页数:11
相关论文
共 51 条
[1]  
Baker BM, 2015, NAT MATER, V14, P1262, DOI [10.1038/NMAT4444, 10.1038/nmat4444]
[2]   PHYSICS OF CHEMORECEPTION [J].
BERG, HC ;
PURCELL, EM .
BIOPHYSICAL JOURNAL, 1977, 20 (02) :193-219
[3]   Physical limits to biochemical signaling [J].
Bialek, W ;
Setayeshgar, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10040-10045
[4]   Modeling semiflexible polymer networks [J].
Broedersz, C. P. ;
MacKintosh, F. C. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :995-1036
[5]  
Broedersz CP, 2011, NAT PHYS, V7, P983, DOI [10.1038/nphys2127, 10.1038/NPHYS2127]
[6]   Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue [J].
Cavalcante, FSA ;
Ito, S ;
Brewer, K ;
Sakai, H ;
Alencar, AM ;
Almeida, MP ;
Andrade, JS ;
Majumdar, A ;
Ingenito, EP ;
Suki, B .
JOURNAL OF APPLIED PHYSIOLOGY, 2005, 98 (02) :672-679
[7]  
Chaudhuri O, 2014, NAT MATER, V13, P970, DOI [10.1038/NMAT4009, 10.1038/nmat4009]
[8]   An Improved Non-Affine Arruda-Boyce Type Constitutive Model for Collagen Networks [J].
Cioroianu, Adrian R. ;
Spiesz, Ewa M. ;
Storm, Cornelis .
BIOPHYSICAL JOURNAL, 2013, 104 (02) :511A-511A
[9]   Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer [J].
Cox, Thomas R. ;
Erler, Janine T. .
DISEASE MODELS & MECHANISMS, 2011, 4 (02) :165-178
[10]   Redundancy and Cooperativity in the Mechanics of Compositely Crosslinked Filamentous Networks [J].
Das, Moumita ;
Quint, D. A. ;
Schwarz, J. M. .
PLOS ONE, 2012, 7 (05)