What can be learned from a proto-neutron star's mass and radius?

被引:6
作者
Preau, E. [1 ,2 ]
Pascal, A. [1 ]
Novak, J. [1 ]
Oertel, M. [1 ]
机构
[1] Univ Paris, Univ PSL, Observ Paris, Lab Univers & Theories, F-92190 Meudon, France
[2] Univ Paris, CNRS, Astroparticule & Cosmol, F-75013 Paris, France
关键词
equation of state; methods: numerical; stars: neutron; GRAVITATIONAL-WAVE OBSERVATIONS; CORE-COLLAPSE SUPERNOVAE; EQUATION; ASTEROSEISMOLOGY; STATE; TESTS;
D O I
10.1093/mnras/stab1348
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We make extensive numerical studies of masses and radii of proto-neutron stars during the first second after their birth in core-collapse supernova events. We use a quasi-static approach for the computation of proto-neutron star structure, built on parametrized entropy and electron fraction profiles, that are then evolved with neutrino cooling processes. We vary the equation of state of nuclear matter, the proto-neutron star mass, and the parameters of the initial profiles, to take into account our ignorance of the supernova progenitor properties. Our results suggest that if masses and radii of a proto-neutron star can be determined in the first second after the birth, e.g. from gravitational wave emission, no information could be obtained on the corresponding cold neutron star and therefore on the cold nuclear equation of state. Similarly, it seems unlikely that any property of the proto-neutron star equation of state (hot and not beta-equilibrated) could be determined either, mostly due to the lack of information on the entropy, or equivalently temperature, distribution in such objects.
引用
收藏
页码:939 / 946
页数:8
相关论文
共 42 条
[1]   GW170817: Measurements of Neutron Star Radii and Equation of State [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aubin, F. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. .
PHYSICAL REVIEW LETTERS, 2018, 121 (16)
[2]   Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions [J].
Bollig, R. ;
Janka, H. -T. ;
Lohs, A. ;
Martinez-Pinedo, G. ;
Horowitz, C. J. ;
Melson, T. .
PHYSICAL REVIEW LETTERS, 2017, 119 (24)
[3]   Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars [J].
Burrows, Adam ;
Radice, David ;
Vartanyan, David .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (03) :3153-3168
[4]   Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory [J].
Capano, Collin D. ;
Tews, Ingo ;
Brown, Stephanie M. ;
Margalit, Ben ;
De, Soumi ;
Kumar, Sumit ;
Brown, Duncan A. ;
Krishnan, Badri ;
Reddy, Sanjay .
NATURE ASTRONOMY, 2020, 4 (06) :625-632
[5]   Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817 [J].
De, Soumi ;
Finstad, Daniel ;
Lattimer, James M. ;
Brown, Duncan A. ;
Berger, Edo ;
Biwer, Christopher M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (09)
[6]   What do we learn about vector interactions from GW170817? [J].
Dexheimer, Veronica ;
Gomes, Rosana de Oliveira ;
Schramm, Stefan ;
Pais, Helena .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2019, 46 (03)
[7]  
Dimmelmeier H., 2005, PHYS REV D, V71, P1
[8]   The neutrino signal from protoneutron star accretion and black hole formation [J].
Fischer, T. ;
Whitehouse, S. C. ;
Mezzacappa, A. ;
Thielemann, F. -K. ;
Liebendoerfer, M. .
ASTRONOMY & ASTROPHYSICS, 2009, 499 (01) :1-15
[9]  
Guven H., 2020, PHYS REV C, V102
[10]  
Haensel P, 2007, ASTROPHYS SPACE SC L, V326, P1, DOI 10.1007/978-0-387-47301-7