Global Regularity and Convergence of a Birkhoff-Rott-α Approximation of the Dynamics of Vortex Sheets of the Two-Dimensional Euler Equations

被引:12
作者
Bardos, Claude
Linshiz, Jasmine S. [1 ]
Titi, Edriss S. [1 ,2 ,3 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
基金
美国国家科学基金会; 以色列科学基金会;
关键词
CAMASSA-HOLM EQUATIONS; WEAK SOLUTIONS; NUMERICAL SIMULATIONS; TRAJECTORY ATTRACTOR; MODEL; FLUID; TURBULENCE; VORTICITY; NONUNIQUENESS; SINGULARITY;
D O I
10.1002/cpa.20305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an a-regularization of the Birkhoff-Rott equation (BR-alpha equation), induced by the two-dimensional Euler-alpha equations, for the vortex sheet dynamics. We show the convergence of the solutions of Euler-alpha equations to a weak solution of the Euler equations for initial vorticity being a finite Radon measure of fixed sign, which includes the vortex sheets case. We also show that, provided the initial density of vorticity is an integrable function over the curve with respect to the arc length measure, (i) an initially Lipschitz chord arc vortex sheet (curve), evolving under the BR-alpha equation, remains Lipschitz for all times, (ii) an initially Holder C-1,C-beta, 0 <= beta < 1, chord arc curve remains in C-1,C-beta for all times, and finally, (iii) an initially Holder C-n,C-beta, n >= 1, 0 < beta < 1, closed chord arc curve remains so for all times. In all these cases the weak Euler-alpha and the BR-alpha descriptions of the vortex sheet motion are equivalent. (C) 2009 Wiley Periodicals, Inc.
引用
收藏
页码:697 / 746
页数:50
相关论文
共 83 条
  • [1] [Anonymous], 1994, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-4284-0
  • [2] A comparison of blob methods for vortex sheet roll-up
    Baker, GR
    Pham, LD
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 547 (297-316) : 297 - 316
  • [3] Bardina J., 1980, AM I AER ASTR FLUID
  • [4] Bardos C, 2007, RUSS MATH SURV+, V62, P409, DOI [10.1070/RM2007v062n03ABEH004410, 10.4213/rm6811]
  • [5] Global regularity for a Birkhoff-Rott-α approximation of the dynamics of vortex sheets of the 2D Euler equations
    Bardos, Claude
    Linshiz, Jasmine S.
    Titi, Edriss S.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) : 1905 - 1911
  • [6] HIGH-ORDER ACCURATE VORTEX METHODS WITH EXPLICIT VELOCITY KERNELS
    BEALE, JT
    MAJDA, A
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (02) : 188 - 208
  • [7] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [8] Berselli LC, 2006, SCI COMPUT, P1
  • [9] BIRKhOFF G., 1962, P S APPL MATH, VXIII, P55, DOI DOI 10.1090/PSAPM/013/0137423
  • [10] SINGULAR SOLUTIONS AND ILL-POSEDNESS FOR THE EVOLUTION OF VORTEX SHEETS
    CAFLISCH, RE
    ORELLANA, OF
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) : 293 - 307