Singular value decomposition of time-varying matrices

被引:19
|
作者
Baumann, M [1 ]
Helmke, U [1 ]
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2003年 / 19卷 / 03期
关键词
singular value decomposition; time-varying matrices; continuation methods;
D O I
10.1016/S0167-739X(02)00162-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is concerned with an algorithm to compute the singular value decomposition (SVD) of time-varying square matrices. In a first step we consider the task of diagonalizing symmetric time-varying matrices A(t). A differential equation is proposed, whose solutions asymptotically track the diagonalizing transformation. In particular, perfect matching of the initial conditions is not required and the solutions converge exponentially towards the desired transformation. Then the desired differential equation for tracking the SVD is derived. Robustness of the algorithms is guaranteed by our approach. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:353 / 361
页数:9
相关论文
共 50 条
  • [21] Visual exploration of time-varying matrices
    Qeli, E
    Wiechert, W
    Freisleben, B
    NINTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2005, : 889 - 895
  • [22] Time-varying coherency matrices and spectral coherency matrices
    Tudor, T
    Vinkler, I
    PURE AND APPLIED OPTICS, 1998, 7 (06): : 1451 - 1457
  • [23] A Delay Decomposition Approach to the Stability Analysis of Singular Systems with Interval Time-Varying Delay
    Jiao, Jianmin
    Zhang, Rui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [24] Stability of Singular NCS with Time-Varying Delay
    Dang, Xiangdong
    Zhang, Qingling
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 499 - 504
  • [25] Note on analysis of time-varying singular systems
    Murugesan, K.
    Advances in Modelling & Simulation, 1991, 24 (04): : 1 - 5
  • [26] REGULARIZATIONS OF LINEAR TIME-VARYING SINGULAR SYSTEMS
    CAMPBELL, SL
    AUTOMATICA, 1984, 20 (03) : 365 - 370
  • [27] Singular value decomposition for the Takagi factorization of symmetric matrices
    Chebotarev, Alexander M.
    Teretenkov, Alexander E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 380 - 384
  • [28] COMPUTING THE SINGULAR VALUE DECOMPOSITION OF A PRODUCT OF 2 MATRICES
    HEATH, MT
    LAUB, AJ
    PAIGE, CC
    WARD, RC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04): : 1147 - 1159
  • [29] An unstructured algorithm for the singular value decomposition of biquaternion matrices
    Wang, Gang
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [30] ANALYTICAL SINGULAR VALUE DECOMPOSITION FOR A CLASS OF STOICHIOMETRY MATRICES
    Wentz, Jacqueline
    Cameron, Jeffrey C.
    Bortz, David M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (03) : 1109 - 1147