Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations

被引:106
作者
Deng, Jiqin [1 ]
Ma, Lifeng [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
关键词
Caputo fractional derivative; Fractional integral; Existence and uniqueness; Banach contraction principle; INTEGRAL-EQUATIONS; MODELS;
D O I
10.1016/j.aml.2010.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the fixed point theory, we study the existence and uniqueness of initial value problems for nonlinear fractional differential equations and obtain a new result. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:676 / 680
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[3]   Fractional differential equations as alternative models to nonlinear differential equations [J].
Bonilla, B. ;
Rivero, M. ;
Rodriguez-Germa, L. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :79-88
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]   Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives [J].
Daftardar-Gejji, Varsha ;
Jafari, Hossein .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1026-1033
[6]   Existence and uniqueness for a nonlinear fractional differential equation [J].
Delbosco, D ;
Rodino, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (02) :609-625
[7]  
Diethelm K., 1999, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, P217
[8]   On the functional integral equations of mixed type and integro-differential equations of fractional orders [J].
El-Sayed, WG ;
El-Sayed, AMA .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (02) :461-467
[9]   Existence of the mild solution for fractional semilinear initial value problems [J].
Jaradat, Omar K. ;
Al-Omari, Ahmad ;
Momani, Shaher .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) :3153-3159
[10]   Nonlinear differential equations with the caputo fractional derivative in the space of continuously differentiable functions [J].
Kilbas, AA ;
Marzan, SA .
DIFFERENTIAL EQUATIONS, 2005, 41 (01) :84-89