MULTILINEAR SINGULAR OPERATORS WITH FRACTIONAL RANK

被引:5
作者
Demeter, Ciprian [1 ]
Pramanik, Malabika [2 ]
Thiele, Christoph [3 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
multilinear singular integral operator; fractional rank; true complexity; BILINEAR HILBERT TRANSFORM; CONJECTURE; BOUNDS;
D O I
10.2140/pjm.2010.246.293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove bounds for multilinear operators on R(d) given by multipliers which are singular along a k-dimensional subspace. The new case of interest is when the rank k/d is not an integer. We also investigate connections with the concept of true complexity from additive combinatorics.
引用
收藏
页码:293 / 324
页数:32
相关论文
共 9 条
[1]  
Demeter C, 2010, AM J MATH, V132, P201
[2]   POINTWISE CONVERGENCE OF FOURIER-SERIES [J].
FEFFERMAN, C .
ANNALS OF MATHEMATICS, 1973, 98 (03) :551-571
[3]   The true complexity of a system of linear equations [J].
Gowers, W. T. ;
Wolf, J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 100 :155-176
[4]   Uniform bounds for the bilinear Hilbert transforms, I [J].
Grafakos, L ;
Li, XC .
ANNALS OF MATHEMATICS, 2004, 159 (03) :889-933
[5]  
Katz NH, 1999, MATH RES LETT, V6, P625
[6]   Lp estimates on the bilinear Hilbert transform for 2<p<∞ [J].
Lacey, M ;
Thiele, C .
ANNALS OF MATHEMATICS, 1997, 146 (03) :693-724
[7]   On Calderon's conjecture [J].
Lacey, M ;
Thiele, C .
ANNALS OF MATHEMATICS, 1999, 149 (02) :475-496
[8]   Lp estimates for the biest II.: The Fourier case [J].
Muscalu, C ;
Tao, T ;
Thiele, C .
MATHEMATISCHE ANNALEN, 2004, 329 (03) :427-461
[9]   Multi-linear operators given by singular multipliers [J].
Muscalu, C ;
Tao, T ;
Thiele, C .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :469-496