Achieving Triply Periodic Minimal Surface Thin-Walled Structures by Micro Laser Powder Bed Fusion Process

被引:31
作者
Qu, Shuo [1 ]
Ding, Junhao [1 ]
Song, Xu [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
关键词
thin-walled structure (TWS); triply periodic minimal surface (TPMS); laser powder bed fusion (LPBF); process parameter window; heat dissipation capability; 316L STAINLESS-STEEL; MECHANICAL-PROPERTIES; POROUS SCAFFOLDS; DESIGN; BIOCOMPATIBILITY; MORPHOLOGY;
D O I
10.3390/mi12060705
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, triply periodic minimal surface (TPMS) lattice structures have been increasingly employed in many applications, such as lightweighting and heat transfer, and they are enabled by the maturation of additive manufacturing technology, i.e., laser powder bed fusion (LPBF). When the shell-based TPMS structure's thickness decreases, higher porosity and a larger surface-to-volume ratio can be achieved, which results in an improvement in the properties of the lattice structures. Micro LPBF, which combines finer laser beam, smaller powder, and thinner powder layer, is employed in this work to fabricate the thin-walled structures (TWS) of TPMS lattice by stainless steel 316 L (SS316L). Utilizing this system, the optimal parameters for printing TPMS-TWS are explored in terms of densification, smoothness, limitation of thickness, and dimensional accuracy. Cube samples with 99.7% relative density and a roughness value of 2.1 mu m are printed by using the energy density of 100 J/mm(3). Moreover, a thin (100 mu m thickness) wall structure can be fabricated through optimizing parameters. Finally, the TWS samples with various TPMS structures are manufactured to compare their heat dissipation capability. As a result, TWS sample of TPMS lattice exhibits a larger temperature gradient in the vertical direction compared to the benchmark sample. The steady-state temperature of the sample base presents a 7 K decrease via introducing TWS.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces [J].
Afshar, M. ;
Anaraki, A. Pourkamali ;
Montazerian, H. .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 92 :254-267
[2]   Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices [J].
Al-Ketan, Oraib ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (10)
[3]   Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J].
Al-Ketan, Oraib ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
ADDITIVE MANUFACTURING, 2018, 19 :167-183
[4]   Corrosion behavior and biocompatibility of additively manufactured 316L stainless steel in a physiological environment: the effect of citrate ions [J].
Al-Mamun, Nahid Sultan ;
Deen, Kashif Mairaj ;
Haider, Waseem ;
Asselin, Edouard ;
Shabib, Ishraq .
ADDITIVE MANUFACTURING, 2020, 34
[5]   Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation [J].
Almeida, Henrique A. ;
Bartolo, Paulo J. .
MEDICAL ENGINEERING & PHYSICS, 2014, 36 (08) :1033-1040
[6]   Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication [J].
Benedetti, M. ;
du Plessis, A. ;
Ritchie, R. O. ;
Dallago, M. ;
Razavi, N. ;
Berto, F. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 144
[7]   Finite Element Analysis of Thermal Stress and Thermal Deformation in Typical Part during SLM [J].
Bian, Peiying ;
Shao, Xiaodong ;
Du, Jingli .
APPLIED SCIENCES-BASEL, 2019, 9 (11)
[8]   Topography of as built surfaces generated in metal additive manufacturing: A multi scale analysis from form to roughness [J].
Cabanettes, F. ;
Joubert, A. ;
Chardon, G. ;
Dumas, V. ;
Rech, J. ;
Grosjean, C. ;
Dimkovski, Z. .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2018, 52 :249-265
[9]   Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion [J].
Catchpole-Smith, S. ;
Selo, R. R. J. ;
Davis, A. W. ;
Ashcroft, I. A. ;
Tuck, C. J. ;
Clare, A. .
ADDITIVE MANUFACTURING, 2019, 30
[10]  
Clijsters S., 2012, P DIR DIG MAN C BERL