Lie Nilpotency Indices of Modular Group Algebras

被引:10
作者
Bovdi, V. [1 ,2 ]
Srivastava, J. B. [3 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Coll Nyiregyhaza, Inst Math & Informat, H-4410 Nyiregyhaza, Hungary
[3] Indian Inst Technol, Dept Math, New Delhi 110016, India
关键词
group algebras; Lie nilpotency index; Lie dimension subgroups; GROUP-RINGS; UNITS;
D O I
10.1142/S1005386710000040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that if KG is Lie nilpotent, then its tipper (or lower) Lie nilpotency index is at most vertical bar G'vertical bar +1, where vertical bar G'vertical bar is the order of the commutator subgroup. The class of groups G for which these indices are maximal or almost maximal has already been determined. Here we determine G for which tipper (or lower) Lie nilpotency index is the next highest possible.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 18 条
[1]  
[Anonymous], P LONDON MATH SOC
[2]   LIE-NILPOTENCY INDEXES OF GROUP-ALGEBRAS [J].
BHANDARI, AK ;
PASSI, IBS .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 :68-70
[3]   Lie properties of the group algebra and the nilpotency class of the group of units [J].
Bovdi, AA ;
Kurdics, J .
JOURNAL OF ALGEBRA, 1999, 212 (01) :28-64
[4]  
BOVDI AA, 1986, MAT SBORNIK, V171, P160
[5]  
BOVDI AA, 1986, MAT SBORNIK, V171, P154
[6]  
Bovdi V, 2004, PUBL MATH-DEBRECEN, V65, P243
[7]  
Bovdi V., 2007, SCI MATH JPN, V65, P267
[8]   Modular group algebras with almost maximal Lie nilpotency indices [J].
Bovdi, Victor ;
Juhasz, Tibor ;
Spinelli, Ernesto .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (03) :259-266
[9]   THE CENTERS OF A RADICAL RING [J].
DU, XK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (02) :174-179
[10]   ON THE LIE IDEALS OF A RING [J].
GUPTA, N ;
LEVIN, F .
JOURNAL OF ALGEBRA, 1983, 81 (01) :225-231