Monte Carlo modeling of angiographic optical coherence tomography

被引:18
作者
Hartinger, Alzbeta E. [1 ]
Nam, Ahhyun S.
Chico-Calero, Isabel
Vakoc, Benjamin J.
机构
[1] Harvard Univ, Sch Med, Wellman Ctr Photomed, Boston, MA 02114 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2014年 / 5卷 / 12期
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会;
关键词
SIMULATION; IMAGES;
D O I
10.1364/BOE.5.004338
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence tomography (OCT) provides both structural and angiographic imaging modes. Because of its unique capabilities, OCT-based angiography has been increasingly adopted into small animal and human subject imaging. To support the development of the signal and image processing algorithms on which OCT-based angiography depends, we describe here a Monte Carlo-based model of the imaging approach. The model supports arbitrary three-dimensional vascular network geometries and incorporates methods to simulate OCT signal temporal decorrelation. With this model, it will be easier to compare the performance of existing and new angiographic signal processing algorithms, and to quantify the accuracy of vascular segmentation algorithms. The quantitative analysis of key algorithms within OCT-based angiography may, in turn, simplify the selection of algorithms in instrument design and accelerate the pace of new algorithm development. (C) 2014 Optical Society of America
引用
收藏
页码:4338 / 4349
页数:12
相关论文
共 13 条
[1]   OPTICAL PROPERTIES OF SKIN, SUBCUTANEOUS, AND MUSCLE TISSUES: A REVIEW [J].
Bashkatov, Alexey N. ;
Genina, Elina A. ;
Tuchin, Valery V. .
JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2011, 4 (01) :9-38
[2]   Online object oriented Monte Carlo computational tool for the needs of biomedical optics [J].
Doronin, Alexander ;
Meglinski, Igor .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (09) :2461-2469
[3]  
Freitas RA., 1999, NANOMEDICINE-UK
[4]   Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function [J].
Friebel, Moritz ;
Roggan, Andre ;
Mueller, Gerhard ;
Meinke, Martina .
JOURNAL OF BIOMEDICAL OPTICS, 2006, 11 (03)
[5]   Speckle statistics in OCT images: Monte Carlo simulations and experimental studies [J].
Kirillin, Mikhail Yu. ;
Farhat, Golnaz ;
Sergeeva, Ekaterina A. ;
Kolios, Michael C. ;
Vitkin, Alex .
OPTICS LETTERS, 2014, 39 (12) :3472-3475
[6]   Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method [J].
Meglinski, Igor ;
Kirillin, Mikhail ;
Kuzmin, Vladimir ;
Myllyla, Risto .
OPTICS LETTERS, 2008, 33 (14) :1581-1583
[7]   Cancer imaging by optical coherence tomography: preclinical progress and clinical potential [J].
Vakoc, Benjamin J. ;
Fukumura, Dai ;
Jain, Rakesh K. ;
Bouma, Brett E. .
NATURE REVIEWS CANCER, 2012, 12 (05) :363-368
[8]   Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging [J].
Vakoc, Benjamin J. ;
Lanning, Ryan M. ;
Tyrrell, James A. ;
Padera, Timothy P. ;
Bartlett, Lisa A. ;
Stylianopoulos, Triantafyllos ;
Munn, Lance L. ;
Tearney, Guillermo J. ;
Fukumura, Dai ;
Jain, Rakesh K. ;
Bouma, Brett E. .
NATURE MEDICINE, 2009, 15 (10) :1219-U151
[9]  
Wang L. V., 2012, Biomedical Optics: Principles and Imaging
[10]   MCML - MONTE-CARLO MODELING OF LIGHT TRANSPORT IN MULTILAYERED TISSUES [J].
WANG, LH ;
JACQUES, SL ;
ZHENG, LQ .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1995, 47 (02) :131-146