Adsorption of small weak organic acids on goethite: Modeling of mechanisms

被引:201
作者
Filius, JD [1 ]
Hiemstra, T [1 ]
Van Riemsdijk, WH [1 ]
机构
[1] Wageningen Univ Agr, Dept Soil Sci & Plant Nutr, NL-6700 EC Wageningen, Netherlands
关键词
adsorption; citrate; goethite; inner sphere; lactate; malonate; MUSIC model; organic acids; outer sphere; oxalate; oxides; phthalate; spectroscopy;
D O I
10.1006/jcis.1997.5152
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption of lactate, oxalate, malonate, phthalate, and citrate has been determined experimentally as a function of concentration, pH, and ionic strength. The data have been described with the CD-MUSIC model of Hiemstra and Van Riemsdijk [J. Colloid Interface Sci. 179, 488-508 (1996)] which allows a distribution of charge of the organic molecule over the surface and the Stern layer. Simultaneously, the concentration, pH, and salt dependency as well as the basic charging behavior of goethite could be described well. On the basis of model calculations, a distinction is made between inner and outer sphere complexation of weak organic acids by goethite. The results indicate that the affinity of the organic acids is dominated by the electrostatic attraction. The intrinsic affinity constants for the exchange reaction of surface water groups and organic acids, expressed per bond, increases with increasing number of reactive groups on the organic molecule. Ion pair formation between noncoordinated carboxylic groups of adsorbed organic acids and cations of the background electrolyte proved to be important for the salt dependency. The knowledge obtained may contribute to the interpretation of the binding of larger organic acids like fulvic and humic acids. (C) 1997 Academic Press.
引用
收藏
页码:368 / 380
页数:13
相关论文
共 34 条
[1]   Competitive sorption of simple organic acids and sulfate on goethite [J].
Ali, MA ;
Dzombak, DA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1996, 30 (04) :1061-1071
[2]   THE INFLUENCE OF THE MAJOR IONS OF SEAWATER ON THE ADSORPTION OF SIMPLE ORGANIC-ACIDS BY GOETHITE [J].
BALISTRIERI, LS ;
MURRAY, JW .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1987, 51 (05) :1151-1160
[3]   THE DISSOLUTION OF QUARTZ IN DILUTE AQUEOUS-SOLUTIONS OF ORGANIC-ACIDS AT 25-DEGREES-C [J].
BENNETT, PC ;
MELCER, ME ;
SIEGEL, DI ;
HASSETT, JP .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1988, 52 (06) :1521-1530
[4]   AN IN-SITU ATR-FTIR STUDY - THE SURFACE COORDINATION OF SALICYLIC-ACID ON ALUMINUM AND IRON(III) OXIDES [J].
BIBER, MV ;
STUMM, W .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (05) :763-768
[5]   DESCRIBING THE ADSORPTION OF PHOSPHATE, CITRATE AND SELENITE ON A VARIABLE-CHARGE MINERAL SURFACE [J].
BOWDEN, JW ;
NAGARAJAH, S ;
BARROW, NJ ;
POSNER, AM ;
QUIRK, JP .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1980, 18 (01) :49-60
[6]   BOND VALENCES - SIMPLE STRUCTURAL MODEL FOR INORGANIC-CHEMISTRY [J].
BROWN, ID .
CHEMICAL SOCIETY REVIEWS, 1978, 7 (03) :359-376
[7]   INFRARED STUDY OF THE ADSORPTION OF HYDROXYCARBOXYLIC ACIDS ON ALPHA-FEOOH AND AMORPHOUS FE (III)HYDROXIDE [J].
CORNELL, RM ;
SCHINDLER, PW .
COLLOID AND POLYMER SCIENCE, 1980, 258 (10) :1171-1175
[8]   Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption [J].
Geelhoed, JS ;
Hiemstra, T ;
VanRiemsdijk, WH .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1997, 61 (12) :2389-2396
[9]   ADSORPTION AND DESORPTION OF DIFFERENT ORGANIC-MATTER FRACTIONS ON IRON-OXIDE [J].
GU, BH ;
SCHMITT, J ;
CHEN, Z ;
LIANG, LY ;
MCCARTHY, JF .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (02) :219-229
[10]   A surface structural approach to ion adsorption: The charge distribution (CD) model [J].
Hiemstra, T ;
VanRiemsdijk, WH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (02) :488-508