On the intersection of the normalizers of derived subgroups of all subgroups of a finite group

被引:30
作者
Li, Shirong [2 ]
Shen, Zhencai [1 ]
机构
[1] Suzhou Univ, Sch Math, Suzhou 215006, Jiangsu, Peoples R China
[2] Guangxi Univ, Dept Math, Nanning 530004, Guangxi, Peoples R China
关键词
Derived subgroup; Meta-nilpotent group; Soluble group; Nilpotency class; Fitting length;
D O I
10.1016/j.jalgebra.2009.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite group G, we define the subgroup D(G) to be the intersection of the normalizers of derived subgroups of all subgroups of G. Set D-0 = 1. Define Di+1 (G)/D-i(G) = D(G/D-i(G)) for i >= 1. By D-infinity(G) denote the terminal term of the ascending series. It is proved that the derived subgroup G' is nilpotent if and only if G = D-infinity(G). Furthermore, if all elements of prime order of G are in D(G), then G is soluble with Fitting length at most 3. In Section 3, it is proved that if the group G satisfies G = D(G), then G' is nilpotent and G '' has nilpotency class at most 2. Published by Elsevier Inc.
引用
收藏
页码:1349 / 1357
页数:9
相关论文
共 16 条
[1]  
Baer R, 1957, Illinois J. Math, V1, P115
[2]  
Baer R., 1935, COMPOS MATH, V1, P254
[3]  
Baer R., 1956, Publ. Math. (Debr.), V4, P347
[4]  
Baer R., 1935, Compos. Math, V2, P247
[5]   Centre and norm [J].
Beidleman, JC ;
Heineken, H ;
Newell, M .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 69 (03) :457-464
[6]   ON THE INTERSECTION OF A CLASS OF MAXIMAL-SUBGROUPS OF A FINITE-GROUP .2. [J].
BHATTACHARYA, P ;
MUKHERJEE, NP .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1986, 42 (02) :117-124
[7]   THE WIELANDT SUBGROUP OF A FINITE SOLUBLE GROUP [J].
BRYCE, RA ;
COSSEY, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 :244-256
[8]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[9]   WIELANDT LENGTH OF FINITE GROUPS [J].
CAMINA, AR .
JOURNAL OF ALGEBRA, 1970, 15 (01) :142-&
[10]  
Gorenstein D., 1980, FINITE GROUP, V2nd