A low noise, laser-gated imaging system for long range target identification

被引:86
作者
Baker, I [1 ]
Duncan, S [1 ]
Copley, J [1 ]
机构
[1] BAE SYST Infra Red Ltd, Southampton SO15 OEG, Hants, England
来源
INFRARED TECHNOLOGY AND APPLICATIONS XXX | 2004年 / 5406卷
关键词
LADAR; LIDAR; active imaging; HgCdTe; avalanche photodiode; APD; SW; 3D imaging;
D O I
10.1117/12.541484
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
BAE SYSTEMS has developed a laser-illuminated, gated imaging system for long range target identification which has generated bright images at ranges in excess of 10km from modest laser energies. The system is based on a short pulsewidth laser and a custom detector for sensing the return pulse. The source is a Nd YAG laser converted by an optical parametric oscillator (OPO) to 1571nm and producing 20ns pulses at 15Hz. The detector (named SWIFT) is a 320x256 array of HgCdTe photodiodes operating with high avalanche gain to achieve sensitivities as low as 10 photon rms. A custom silicon multiplexer performs the signal injection and temporal gating function, and adds additional electronic gain. Trials show that the current detectors have gate edges equivalent to 1.5m in range and complete extinction of signals outside of the gated range. The detector is encapsulated in an integrated-detector-cooler-assembly and utilises standard productionised thermal imaging electronics to perform non-uniformity correction and grey scale images. Imaging trials using the camera have shown little excess noise, crosstalk or non-uniformity due to the use of avalanching in the HaCdTe photodiodes up to gains of over 100. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. The imagery, collected both in the laboratory and in field trials, has been used to explore the phenomenology unique to laser-illuminated targets and to verify system models.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 7 条
[1]   AN HG0.3CD0.7TE AVALANCHE PHOTODIODE FOR OPTICAL-FIBER TRANSMISSION-SYSTEMS AT LAMBDA= 1.3-MU-M [J].
ALABEDRA, R ;
ORSAL, B ;
LECOY, G ;
PICHARD, G ;
MESLAGE, J ;
FRAGNON, P .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1985, 32 (07) :1302-1306
[2]  
BAKER IM, 1994, P SOC PHOTO-OPT INS, V2269, P636, DOI 10.1117/12.188683
[3]   Summary of HgCdTe 2D array technology in the UK [J].
Baker, IM ;
Maxey, CD .
JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (06) :682-689
[4]   MWIR HgCdTe avalanche photodiodes [J].
Beck, JD ;
Wan, CF ;
Kinch, MA ;
Robinson, JE .
MATERIALS FOR INFRARED DETECTORS, 2001, 4454 :188-197
[5]   REVERSE BREAKDOWN IN LONG WAVELENGTH LATERAL COLLECTION CDXHG1-XTE DIODES [J].
ELLIOTT, CT ;
GORDON, NT ;
HALL, RS ;
CRIMES, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (02) :1251-1253
[6]   IONIZATION ENERGIES IN CDXHG1-XTE AVALANCHE PHOTODIODES [J].
LEVEQUE, G ;
NASSER, M ;
BERTHO, D ;
ORSAL, B ;
ALABEDRA, R .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (07) :1317-1323
[7]   Metal-organic vapor-phase epitaxial growth of HgCdTe device heterostructures on three-inch-diameter substrates [J].
Maxey, CD ;
Camplin, JP ;
Guilfoy, IT ;
Gardner, J ;
Lockett, RA ;
Jones, CL ;
Capper, P ;
Houlton, M ;
Gordon, NT .
JOURNAL OF ELECTRONIC MATERIALS, 2003, 32 (07) :656-660