Recent progress on local spectrum-preserving maps

被引:2
作者
Bourhim, Abdellatif [1 ]
Mashreghi, Javad [2 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie Bldg, Syracuse, NY 13244 USA
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
来源
LINEAR AND MULTILINEAR ALGEBRA AND FUNCTION SPACES | 2020年 / 750卷
关键词
Nonlinear preservers; Local spectrum; the single-valued extension property; finite rank operators; PERIPHERALLY-MULTIPLICATIVE SURJECTIONS; LINEAR-OPERATORS RS; SKEW LIE PRODUCT; COMMON PROPERTIES; BANACH-ALGEBRAS; JORDAN HOMOMORPHISMS; NUMERICAL RANGE; TRIPLE PRODUCT; POLYNOMIAL XY; MATRICES;
D O I
10.1090/conm/750/15106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be two infinite-dimensional complex Banach spaces, and B(X) (resp. B(Y)) be the algebra of all bounded linear operators on X (resp. on Y). Fix two nonzero vectors x(0) is an element of X and y(0) is an element of Y, and let B-x0(2) (X) (resp. B-y0(2) (Y)) be the collection of all operators in B(X) (resp. in B(Y)) vanishing at x(0) (resp. at y(0)) or having zero square. On one hand, we review and discuss recent development of maps from B(X) onto B(Y) preserving the local spectrum of different products of operators and matrices. On the other hand, we establish new related results and show that if two maps phi(1) and phi(2) from B(X) onto B(Y) satisfy sigma(phi 2(T)phi 1(S)phi 2(T))(y(0)) = sigma(TST)(x(0)), (T, S is an element of B(X)), then phi(2) maps B-x0 (X) onto B-y0 (Y) and there exist two bijective linear mappings A : X -> Y and B : Y -> X, and a function alpha : B(X)\B-x0(X) -> C\{0}) such that phi(1)(T) = ATB for all T is an element of B(X), and phi(2)(T)(2) = B(-1)T(2)A(-1) and phi(2)(T)y(0) = alpha(T)B(-1)Tx(0) for all T is not an element of B-x0(2)(X). When X = Y = C-n, we show that the surjectivity condition on phi(1) and phi(2) is redundant. Furthermore, some known results are obtained as immediate consequences of our main results.
引用
收藏
页码:109 / 151
页数:43
相关论文
共 151 条
[1]   Lie product and local spectrum preservers [J].
Abdelali, Z. ;
Bourhim, A. ;
Mabrouk, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 :328-361
[2]   Maps preserving the local spectrum of skew-product of operators [J].
Abdelali, Z. ;
Achchi, A. ;
Marzouki, R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 :58-71
[3]  
Abdelali Z., SPECTRUM LOCAL SPECT
[4]   Maps preserving the local spectral radius zero of generalized product of operators [J].
Abdelali, Zine El Abidine ;
Achchi, Abdelali ;
Marzouki, Rabi .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10) :2021-2029
[5]  
Abdelali ZE, 2018, ACTA SCI MATH, V84, P49, DOI 10.14232/actasm-017-590-0
[6]   MAPS PRESERVING THE LOCAL SPECTRUM OF SOME MATRIX PRODUCTS [J].
Abdelali, Zit El Abidine ;
Achchi, Abdelali ;
Marzouki, Rabi .
OPERATORS AND MATRICES, 2018, 12 (02) :549-562
[7]  
Aiena P, 2004, FREDHOLM LOCAL SPECT
[8]   Determining elements in C*-algebras through spectral properties [J].
Alaminos, J. ;
Bresar, M. ;
Extremera, J. ;
Spenko, S. ;
Villena, A. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) :214-219
[9]   Characterizations of n-Jordan homomorphisms [J].
An, Guangyu .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04) :671-680
[10]   Additivity of Jordan multiplicative maps on Jordan operator algebras [J].
An, RL ;
Hou, JC .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (01) :45-64