Uniform pointwise convergence on Shishkin-type meshes for quasi-linear convection-diffusion problems

被引:55
|
作者
Linss, T [1 ]
Roos, HG
Vulanovic, R
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[2] Kent State Univ, Dept Math & Comp Sci, Canton, OH 44720 USA
关键词
convection-diffusion problems; quasi-linear problems; upwind scheme; singular perturbation; Shishkin-type mesh;
D O I
10.1137/S0036142999355957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed quasi-linear two-point boundary value problem with an exponential boundary layer is considered. The problem is discretized using a nonstandard upwinded first-order difference scheme on generalized Shishkin-type meshes. We give a uniform error estimate in a discrete L-infinity norm. Numerical experiments support the theoretical results.
引用
收藏
页码:897 / 912
页数:16
相关论文
共 50 条