On the Theorem of the Primitive Element with Applications to the Representation Theory of Associative and Lie Algebras

被引:10
作者
Cagliero, Leandro [1 ]
Szechtman, Fernando [2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, CIEM CONICET, RA-5000 Cordoba, Argentina
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2014年 / 57卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
uniserial module; Lie algebra; associative algebra; primitive element; FIELD; RINGS;
D O I
10.4153/CMB-2013-046-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let K/F be a finite separable field extension and let x, y is an element of K. When is F[x, y] = F[alpha x + beta y] for some nonzero elements alpha, beta is an element of F?
引用
收藏
页码:735 / 748
页数:14
相关论文
共 29 条
[1]  
Anderson F.W., 1992, GRADUATE TEXTS MATH, V13
[2]  
Artin E., 1998, Galois Theory
[3]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[4]  
Becker M. F., 1940, B AM MATH SOC, V46, P182, DOI [DOI 10.1090/50002-9904-1940-07169-1, 10.1090/S0002-9904-1940-07169-1.T2.6, DOI 10.1090/S0002-9904-1940-07169-1.T2.6]
[5]  
Bourbaki N., 1990, ALGEBRA
[6]   ADDITION OF SEQUENCES IN GENERAL FIELDS [J].
BROWKIN, J ;
DIVIS, B ;
SCHINZEL, A .
MONATSHEFTE FUR MATHEMATIK, 1976, 82 (04) :261-268
[7]  
Cagliero L., ARXIV14078125
[8]   The classification of uniserial sl(2) (sic) V(m)-modules and a new interpretation of the Racah-Wigner 6j-symbol [J].
Cagliero, Leandro ;
Szechtman, Fernando .
JOURNAL OF ALGEBRA, 2013, 386 :142-175
[9]  
Drozd Y. A., 1994, FINITE DIMENSIONAL A
[10]  
Dummit D. S., 2004, ABSTRACT ALGEBRA, V3