A Picture Fuzzy Clustering Approach for Brain Tumor Segmentation

被引:0
作者
Kumar, S. V. Aruna [1 ]
Harish, B. S. [1 ]
Aradhya, V. N. Manjunath [2 ]
机构
[1] JSS Sci & Technol Univ, Dept Informat Sci & Engg, Mysuru, India
[2] JSS Sci & Technol Univ, Dept Master Comp Applicat, Mysuru, India
来源
2016 SECOND INTERNATIONAL CONFERENCE ON COGNITIVE COMPUTING AND INFORMATION PROCESSING (CCIP) | 2016年
关键词
Segmentation; Clustering; Fuzzy C Means; Intutionistic fuzzy set; Picture fuzzy clustering; ALGORITHM; FCM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a Picture Fuzzy Clustering (PFC) method for MRI brain image segmentation. The PFC is based on the Picture fuzzy set, which is the generalization of the traditional fuzzy set and intuitionistic fuzzy set. In traditional fuzzy set, the problem of uncertainty arises in defining the membership function. Intuitionistic fuzzy set handles this uncertainty by considering hesitation degree. However, intuitionistic fuzzy set fails to solve real time problems which require answers like yes, abstain, no and refusal. The picture fuzzy set solves these problems by considering refusal degree along with membership, neutral and nonmembership degree. Thus, the cluster centers in the PFC may converge to a desirable location than the cluster centers obtained using traditional Fuzzy C-Means (FCM) and Intuitionistic Fuzzy Clustering (IFC). Experimentation is carried out on the standard MRI brain image dataset. To assess the performance, the proposed method is compared with the existing FCM and IFC methods. Results show that the proposed method gives the better result.
引用
收藏
页数:6
相关论文
共 23 条
  • [11] Kumar S.A., 2015, 2015 INT C COGN COMP, P1
  • [12] Kumar S.A., 2014, P 8 INT C IM SIGN PR, P38
  • [13] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [14] Noordam JC, 2000, INT C PATT RECOG, P462, DOI 10.1109/ICPR.2000.905376
  • [15] Adaptive fuzzy segmentation of magnetic resonance images
    Pham, DL
    Prince, JL
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (09) : 737 - 752
  • [16] Sugeno M., 1977, Kybernetes, V6, P157, DOI 10.1108/eb005448
  • [17] Thong P. H., SOFT COMPUTING, P1
  • [18] A Generalized Spatial Fuzzy C-Means Algorithm for Medical Image Segmentation
    Van Lung, Huynh
    Kim, Jong-Myon
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 409 - +
  • [19] A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints
    Wang, Jianzhong
    Kong, Jun
    Lu, Yinghua
    Qi, Miao
    Zhang, Baoxue
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2008, 32 (08) : 685 - 698
  • [20] Clustering algorithm for intuitionistic fuzzy sets
    Xu, Zeshui
    Chen, Jian
    Wu, Junjie
    [J]. INFORMATION SCIENCES, 2008, 178 (19) : 3775 - 3790