Ultra-Thin Self-Assembled Protein-Polymer Membranes: A New Pore Forming Strategy

被引:30
|
作者
van Rijn, Patrick [1 ,2 ,3 ]
Tutus, Murat [1 ,4 ]
Kathrein, Christine [1 ,2 ]
Mougin, Nathalie C. [1 ,2 ]
Park, Hyunji [1 ,2 ]
Hein, Christopher [1 ,4 ]
Schuerings, Marco P. [1 ,2 ]
Boeker, Alexander [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, DWI Leibniz Inst Interact Mat, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl Makromol Mat & Oberflachen, D-52056 Aachen, Germany
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn FB40, WJ Kolff Inst Biomed Engn & Mat Sci, NL-9713 AV Groningen, Netherlands
[4] Rhein Westfal TH Aachen, Aachener Verfahrenstech, D-52056 Aachen, Germany
关键词
CROSS-LINKING; WATER; DRUG; BIONANOPARTICLES; SEPARATION; CAPSULES;
D O I
10.1002/adfm.201401825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembled membranes offer a promising alternative for conventional membrane fabrication, especially in the field of ultrafiltration. Here, a new pore-making strategy is introduced involving stimuli responsive proteinpolymer conjugates self-assembled across a large surface area using dryingmediated interfacial self-assembly. The membrane is flexible and assembled on porous supports. The protein used is the cage protein ferritin and resides within the polymer matrix. Upon denaturation of ferritin, a pore is formed which intrinsically is determined by the size of the protein and how it resides in the matrix. Due to the self-assembly at interfaces, the membrane constitutes of only one layer resulting in a membrane thickness of 7 nm on average in the dry state. The membrane is stable up to at least 50 mbar transmembrane pressure, operating at a flux of about 21 000-25 000 L m(-2) h(-1) bar(-1) and displayed a preferred size selectivity of particles below 20 nm. This approach diversifies membrane technology generating a platform for "smart" self-assembled membranes.
引用
收藏
页码:6762 / 6770
页数:9
相关论文
共 50 条
  • [1] Crosslinking of Self-Assembled Protein-Polymer Conjugates with Divanillin
    Li, Zihao
    Jiang, Yanyan
    Wuest, Kilian
    Callari, Manuela
    Stenzel, Martina H.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2020, 73 (10) : 1034 - 1041
  • [2] Self-assembled process for the preparation of ultra-thin zeolite films
    Cho, G
    Moon, IS
    Shul, YG
    Jung, KT
    Lee, JS
    Fung, BM
    CHEMISTRY LETTERS, 1998, (04) : 355 - 356
  • [3] Self-assembled nanostructures from amphiphilic globular protein-polymer hybrids
    Cao, Qi
    He, Naipu
    Wang, Yue
    Lu, Zhenwu
    POLYMER BULLETIN, 2018, 75 (06) : 2627 - 2639
  • [4] Self-assembled nanomaterials from globular protein-polymer diblock copolymers
    Olsen, Bradley D.
    Thomas, Carla S.
    Lam, Christopher N.
    Xu, Liza
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [5] In Situ Growth of Self-Assembled Protein-Polymer Nanovesicles for Enhanced Intracellular Protein Delivery
    Liu, Xinyu
    Gao, Weiping
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 2023 - 2028
  • [6] Electrochemistry of self-assembled ultra-thin films composed of chloroperoxidase and polyions
    Lu, Zhongqing
    Hou, Wenjing
    Wu, Xiaqin
    Li, Hexing
    Chen, Jun
    CHEMISTRY LETTERS, 2007, 36 (04) : 564 - 565
  • [7] Ultra-thin zeolite films through simple self-assembled processes
    Cho, G
    Lee, JS
    Glatzhofer, DT
    Fung, BM
    Yuan, WL
    O'Rear, EA
    ADVANCED MATERIALS, 1999, 11 (06) : 497 - +
  • [8] Self-Assembled Ultra-Thin Silica Layers for On-Chip Chromatography
    Choi, Sun
    Park, Inkyu
    Pisano, Albert P.
    MATERIALS AND STRATEGIES FOR LAB-ON-A-CHIP - BIOLOGICAL ANALYSIS, CELL-MATERIAL INTERFACES AND FLUIDIC ASSEMBLY OF NANOSTRUCTURES, 2009, 1191 : 59 - +
  • [9] Self-Assembled Biodegradable Protein-Polymer Vesicle as a Tumor-Targeted Nanocarrier
    Liu, Zhongyun
    Dong, Chunhong
    Wang, Xiaomin
    Wang, Hanjie
    Li, Wei
    Tan, Jian
    Chang, Jin
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (04) : 2393 - 2400
  • [10] MPTMS self-assembled monolayer deposition for ultra-thin gold films for plasmonics
    Gothe, Pushkar K.
    Gaur, Dhruv
    Achanta, Venu Gopal
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (03):