Geometry of KAM tori for nearly integrable Hamiltonian systems

被引:21
作者
Broer, Henk
Cushman, Richard
Fasso, Francesco
Takens, Floris
机构
[1] Univ Groningen, Inst Wiskunde Informat, NL-9747 AC Groningen, Netherlands
[2] Univ Utrecht, Fac Wiskunde Informat, NL-3584 CD Utrecht, Netherlands
[3] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
D O I
10.1017/S0143385706000897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangian tori by gluing together local KAM conjugacies with the help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to the preservation of geometry, which allows us to define all non-trivial geometric invariants of an integrable Hamiltonian system (like monodromy) for a nearly integrable one.
引用
收藏
页码:725 / 741
页数:17
相关论文
共 34 条
[1]  
[Anonymous], USPEKHI MAT NAUK
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC
[3]  
[Anonymous], EUVRES COMPLETES C H
[4]  
[Anonymous], J DIFFER EQUATIONS
[5]  
BROER H, 1996, LECT NOTES MATH, V1645
[6]   Normal linear stability of quasi-periodic tori [J].
Broer, H. W. ;
Hoo, J. ;
Naudot, V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :355-418
[7]   Unicity of KAM tori [J].
Broer, Henk ;
Takens, Floris .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :713-724
[8]   FROM A DIFFERENTIABLE TO A REAL ANALYTIC PERTURBATION-THEORY, APPLICATIONS TO THE KUPKA SMALE THEOREMS [J].
BROER, HW ;
TANGERMAN, FM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :345-362
[9]   SMOOTH PRIME INTEGRALS FOR QUASI-INTEGRABLE HAMILTONIAN-SYSTEMS [J].
CHIERCHIA, L ;
GALLAVOTTI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 67 (02) :277-295
[10]  
Ciocci MC, 2005, LOND MATH S, V306, P303