Geometry of KAM tori for nearly integrable Hamiltonian systems

被引:21
作者
Broer, Henk
Cushman, Richard
Fasso, Francesco
Takens, Floris
机构
[1] Univ Groningen, Inst Wiskunde Informat, NL-9747 AC Groningen, Netherlands
[2] Univ Utrecht, Fac Wiskunde Informat, NL-3584 CD Utrecht, Netherlands
[3] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
D O I
10.1017/S0143385706000897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangian tori by gluing together local KAM conjugacies with the help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to the preservation of geometry, which allows us to define all non-trivial geometric invariants of an integrable Hamiltonian system (like monodromy) for a nearly integrable one.
引用
收藏
页码:725 / 741
页数:17
相关论文
共 34 条
  • [1] [Anonymous], USPEKHI MAT NAUK
  • [2] [Anonymous], 1978, MATH METHODS CLASSIC
  • [3] [Anonymous], EUVRES COMPLETES C H
  • [4] [Anonymous], J DIFFER EQUATIONS
  • [5] BROER H, 1996, LECT NOTES MATH, V1645
  • [6] Normal linear stability of quasi-periodic tori
    Broer, H. W.
    Hoo, J.
    Naudot, V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) : 355 - 418
  • [7] Unicity of KAM tori
    Broer, Henk
    Takens, Floris
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 713 - 724
  • [8] FROM A DIFFERENTIABLE TO A REAL ANALYTIC PERTURBATION-THEORY, APPLICATIONS TO THE KUPKA SMALE THEOREMS
    BROER, HW
    TANGERMAN, FM
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 : 345 - 362
  • [9] SMOOTH PRIME INTEGRALS FOR QUASI-INTEGRABLE HAMILTONIAN-SYSTEMS
    CHIERCHIA, L
    GALLAVOTTI, G
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 67 (02): : 277 - 295
  • [10] Ciocci MC, 2005, LOND MATH S, V306, P303