Vector bundles over multipullback quantum complex projective spaces

被引:0
|
作者
Sheu, Albert Jeu-Liang [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
欧盟地平线“2020”;
关键词
Multipullback quantum projective space; multipullback quantum sphere; quantum line bundle; finitely generated projective module; cancellation problem; Toeplitz algebra of polydisk; groupoid C*-algebra; stable rank; noncommutative vector bundle; C-STAR-ALGEBRAS; CANCELLATION THEOREM; STABLE RANGE; MODULES; OPERATORS;
D O I
10.4171/JNCG/401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We work on the classification of isomorphism classes of finitely generated projective modules over the C*-algebras C(P-n(T)) and C(S-H(2n+1)) of the quantum complex projective spaces P-n(T) and the quantum spheres S-H(2n+1), and the quantum line bundles L-k over P-n(T), studied by Hajac and collaborators. Motivated by the groupoid approach of Curto, Muhly, and Renault to the study of C*-algebraic structure, we analyze C(P-n(T)), C(S-H(2n+1)), and L-k in the context of groupoid C*-algebras, and then apply Rieffel's stable rank results to show that all finitely generated projective modules over C(S-H(2n+1)) of rank higher than [n/2] + 3 are free modules. Furthermore, besides identifying a large portion of the positive cone of the K-0-group of C(P-n(T), we also explicitly identify L-k with concrete representative elementary projections over C(P-n(T)).
引用
收藏
页码:305 / 345
页数:41
相关论文
共 15 条
  • [1] The Structure of Line Bundles over Quantum Teardrops
    Sheu, Albert Jeu-Liang
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
  • [2] Projective Modules Over Quantum Projective Line
    Sheu, Albert Jeu-Liang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (03)
  • [3] Quantum-Classical Correspondence on Associated Vector Bundles Over Locally Symmetric Spaces
    Kuester, Benjamin
    Weich, Tobias
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (11) : 8225 - 8296
  • [4] Quantum complex projective spaces from Toeplitz cubes
    Hajac, Piotr M.
    Kaygun, Atabey
    Zielinski, Bartosz
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (03) : 603 - 621
  • [5] Ulrich bundles on double covers of projective spaces
    Kumar, N. Mohan
    Narayanan, Poornapushkala
    Parameswaran, A. J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (06)
  • [6] Heisenberg Modules over Quantum 2-tori are Metrized Quantum Vector Bundles
    Latremoliere, Frederic
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (04): : 1044 - 1081
  • [7] Quantum Bundle Description of Quantum Projective Spaces
    Buachalla, Reamonn O.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (02) : 345 - 373
  • [8] C*-ALGEBRAS ASSOCIATED TO HOMEOMORPHISMS TWISTED BY VECTOR BUNDLES OVER FINITE DIMENSIONAL SPACES
    Adamo, Maria Stella
    Archey, Dawn E.
    Forough, Marzieh
    Georgescu, Magdalena C.
    Jeong, Ja A.
    Strung, Karen R.
    Viola, Maria Grazia
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, : 1597 - 1640
  • [9] GROWTH OF TAYLOR COEFFICIENTS OVER COMPLEX HOMOGENEOUS SPACES
    Driver, Bruce K.
    Gross, Leonard
    Saloff-Coste, Laurent
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (03) : 427 - 474
  • [10] Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces
    Luef, Franz
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (06) : 1921 - 1946