WELL POSEDNESS OF FULLY COUPLED FRACTURE/BULK DARCY FLOW WITH XFEM

被引:25
作者
Del Pra, Marco [1 ]
Fumagalli, Alessio [2 ]
Scotti, Anna [2 ]
机构
[1] Univ Milan, Dept Math Federigo Enriques, I-20133 Milan, Italy
[2] Politecn Milan, Dept Math Francesco Brioschi, I-20133 Milan, Italy
关键词
flows in fractured porous media; stability of mixed finite element; extended finite element; FINITE-ELEMENT-METHOD; 2-PHASE FLOW; POROUS-MEDIA; MODEL;
D O I
10.1137/15M1022574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the coupled problem of Darcy flow in a fracture and the surrounding porous medium. The fracture is represented as a (d - 1)-dimensional interface, and it is nonmatching with the computational grid thanks to a suitable extended finite element method (XFEM) enrichment of the mixed finite element spaces. In the existing literature well posedness has been proven for the discrete problem in the hypothesis of a given solution in the fracture. This work provides theoretical results on the stability and convergence of the discrete, fully coupled problem, yielding sharp conditions on the fracture geometry and on the computational grid to ensure that the inf-sup condition is satisfied by the enriched spaces, as confirmed by numerical experiments.
引用
收藏
页码:785 / 811
页数:27
相关论文
共 23 条
  • [1] Al-Hinai O., 2015, P SPE RES SIM S SOC, P2152
  • [2] Alboin C, 2000, LECT NOTES PHYS, V552, P22
  • [3] ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS IN FRACTURED POROUS MEDIA
    Angot, Philippe
    Boyer, Franck
    Hubert, Florence
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02): : 239 - 275
  • [4] [Anonymous], 1994, SPRINGER SER COMPUT
  • [5] MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA
    Antonietti, Paola F.
    Formaggia, Luca
    Scotti, Anna
    Verani, Marco
    Verzott, Nicola
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 809 - 832
  • [6] The virtual element method for discrete fracture network simulations
    Benedetto, Matias Fernando
    Berrone, Stefano
    Pieraccini, Sandra
    Scialo, Stefano
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 : 135 - 156
  • [7] A MIXED FINITE ELEMENT METHOD FOR DARCY FLOW IN FRACTURED POROUS MEDIA WITH NON-MATCHING GRIDS
    D'Angelo, Carlo
    Scotti, Anna
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 465 - 489
  • [8] Douglas Jr J., 1990, Dynamics of Fluids in Hierarchical Porous Media, P177
  • [9] Ern A., 2004, APPL MATH SCI
  • [10] Faille I., 2002, Finite Vol. Complex Appl., P529