Research progress of zero-shot learning

被引:32
|
作者
Sun, Xiaohong [1 ,2 ]
Gu, Jinan [1 ]
Sun, Hongying [2 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang, Peoples R China
[2] Anyang Inst Technol, Sch Mech Engn, Anyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; Feature extraction; Semantic representation; Visual-semantic mapping; ACTION RECOGNITION; MODEL; EFFICIENT; SCALE;
D O I
10.1007/s10489-020-02075-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although there have been encouraging breakthroughs in supervised learning since the renaissance of deep learning, the recognition of large-scale object classes remains a challenge, especially when some classes have no or few training samples. In this paper, the development of ZSL is reviewed comprehensively, including the evolution, key technologies, mainstream models, current research hotspots and future research directions. First, the evolution process is introduced from the perspectives of multi-shot, few-shot to zero-shot learning. Second, the key techniques of ZSL are analyzed in detail in terms of three aspects: visual feature extraction, semantic representation and visual-semantic mapping. Third, some typical models are interpreted in chronological order. Finally, closely related articles from the last three years are collected to analyze the current research hotspots and list future research directions.
引用
收藏
页码:3600 / 3614
页数:15
相关论文
共 50 条
  • [1] Research progress of zero-shot learning
    Xiaohong Sun
    Jinan Gu
    Hongying Sun
    Applied Intelligence, 2021, 51 : 3600 - 3614
  • [2] Research Progress of Zero-Shot Learning Beyond Computer Vision
    Cao, Weipeng
    Zhou, Cong
    Wu, Yuhao
    Ming, Zhong
    Xu, Zhiwu
    Zhang, Jiyong
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT II, 2020, 12453 : 538 - 551
  • [3] Research and Development on Zero-Shot Learning
    Zhang L.-N.
    Zuo X.
    Liu J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (01): : 1 - 23
  • [4] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198
  • [5] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645
  • [6] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [7] Zero-Shot Learning Based on Deep Weighted Attribute Prediction
    Wang, Xuesong
    Chen, Chen
    Cheng, Yuhu
    Chen, Xun
    Liu, Yu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (08): : 2948 - 2957
  • [8] Zero-Shot Learning for Computer Vision Applications
    Sarma, Sandipan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9360 - 9364
  • [9] A Review of Generalized Zero-Shot Learning Methods
    Pourpanah, Farhad
    Abdar, Moloud
    Luo, Yuxuan
    Zhou, Xinlei
    Wang, Ran
    Lim, Chee Peng
    Wang, Xi-Zhao
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4051 - 4070
  • [10] Zero-Shot Learning Based on Knowledge Sharing
    Zeng, Ting
    Xiang, Hongxin
    Xie, Cheng
    Yang, Yun
    Liu, Qing
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 643 - 648