A study on blowup solutions to the focusing L2-supercritical nonlinear fractional Schrodinger equation

被引:10
作者
Van Duong Dinh [1 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
CAUCHY-PROBLEM;
D O I
10.1063/1.5027713
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamical properties of blowup solutions to the focusing L-2-supercritical nonlinear fractional Schrodinger equation i partial derivative(t)u - (-Delta)(s)u = -vertical bar u vertical bar(alpha)u on [0, +infinity) x R-d, where d >= 2, d/2d-1 <= s < 1, 4s/d < alpha < 4s/d-2s, and the initial data u(0) = u(0) is an element of <(H)over dot>(Sc) boolean AND <(H)over dot>(S) is radial with the critical Sobolev exponent S-c. To this end, we establish a compactness lemma related to the equation by means of the profile decomposition for bounded sequences in <(H)over dot>(Sc) boolean AND <(H)over dot>(S). As a result, we obtain the <(H)over dot>(Sc)-concentration of blowup solutions with bounded <(H)over dot>(Sc)-norm and the limiting profile of blowup solutions with critical <(H)over dot>(Sc)-norm. Published by AIP Publishing.
引用
收藏
页数:25
相关论文
共 29 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2010, Theory of Function Spaces
[3]   Blowup for fractional NLS [J].
Boulenger, Thomas ;
Himmelsbach, Dominik ;
Lenzmann, Enno .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) :2569-2603
[4]  
Cho Y., ADV DIFFER EQU UNPUB
[5]   Strichartz Estimates in Spherical Coordinates [J].
Cho, Yonggeun ;
Lee, Sanghyuk .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) :991-1020
[6]   On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity [J].
Cho, Yonggeun ;
Hajaiej, Hichem ;
Hwang, Gyeongha ;
Ozawa, Tohru .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02) :193-224
[7]   Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations [J].
Cho, Yonggeun ;
Hwang, Gyeongha ;
Kwon, Soonsik ;
Lee, Sanghyuk .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :12-29
[8]   REMARKS ON SOME DISPERSIVE ESTIMATES [J].
Cho, Yonggeun ;
Ozawa, Tohru ;
Xia, Suxia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1121-1128
[9]   SOBOLEV INEQUALITIES WITH SYMMETRY [J].
Cho, Yonggeun ;
Ozawa, Tohru .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) :355-365
[10]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109