ON THE PERIMETER OF EXCURSION SETS OF SHOT NOISE RANDOM FIELDS

被引:14
作者
Bierme, Hermine [1 ]
Desolneux, Agnes [2 ]
机构
[1] Univ Poitiers, CNRS, UMR 7348, LMA, Teleport 2-BP30179,Blvd Marie & Pierre Curie, F-86962 Chasseneuil, France
[2] Ecole Normale Super, CNRS, CMLA, UMR 8536, 61 Ave President Wilson, F-94235 Cachan, France
关键词
Shot noise; excursion set; stationary process; Poisson process; characteristic function; functions of bounded variation; coarea formula; LEVEL-CROSSINGS; RICE FORMULA;
D O I
10.1214/14-AOP980
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we use the framework of functions of bounded variation and the coarea formula to give an explicit computation for the expectation of the perimeter of excursion sets of shot noise random fields in dimension n >= 1. This will then allow us to derive the asymptotic behavior of these mean perimeters as the intensity of the underlying homogeneous Poisson point process goes to infinity. In particular, we show that two cases occur: we have a Gaussian asymptotic behavior when the kernel function of the shot noise has no jump part, whereas the asymptotic is non-Gaussian when there are jumps.
引用
收藏
页码:521 / 543
页数:23
相关论文
共 19 条
[1]   HIGH LEVEL EXCURSION SET GEOMETRY FOR NON-GAUSSIAN INFINITELY DIVISIBLE RANDOM FIELDS [J].
Adler, Robert J. ;
Samorodnitsky, Gennady ;
Taylor, Jonathan E. .
ANNALS OF PROBABILITY, 2013, 41 (01) :134-169
[2]  
Adler Robert J., 2007, Random Fields and Geometry, DOI DOI 10.1007/978-0-387-48116-6
[3]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI [10.1017/S0024609301309281, 10.1093/oso/9780198502456.001.0001]
[4]  
Azais J., 2009, Level Sets and Extrema of Random Processes and Fields, DOI [10.1002/9780470434642, DOI 10.1002/9780470434642]
[5]   On a coverage process ranging from the Boolean model to the Poisson-Voronoi tessellation with applications to wireless communications [J].
Baccelli, F ;
Blaszczyszyn, B .
ADVANCES IN APPLIED PROBABILITY, 2001, 33 (02) :293-323
[6]   Stochastic Geometry and Wireless Networks: Volume II Applications [J].
Baccelli, Francois ;
Blaszczyszyn, Bartlomiej .
FOUNDATIONS AND TRENDS IN NETWORKING, 2009, 4 (1-2) :1-302
[7]   CROSSINGS OF SMOOTH SHOT NOISE PROCESSES [J].
Bierme, Hermine ;
Desolneux, Agnes .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (06) :2240-2281
[8]   A FOURIER APPROACH FOR THE LEVEL CROSSINGS OF SHOT NOISE PROCESSES WITH JUMPS [J].
Bierme, Hermine ;
Desolneux, Agnes .
JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) :100-113
[9]   ON LEVEL CROSSINGS FOR A GENERAL CLASS OF PIECEWISE-DETERMINISTIC MARKOV PROCESSES [J].
Borovkov, K. ;
Last, G. .
ADVANCES IN APPLIED PROBABILITY, 2008, 40 (03) :815-834
[10]   Central limit theorems for the excursion set volumes of weakly dependent random fields [J].
Bulinski, Alexander ;
Spodarev, Evgeny ;
Timmermann, Florian .
BERNOULLI, 2012, 18 (01) :100-118