Effects of TiO2, ZnO, and Fe3O4 nanofillers on rheological behavior, microstructure, and reaction kinetics of rigid polyurethane foams

被引:15
作者
Akkoyun, Meral [1 ]
Suvaci, Ender [1 ]
机构
[1] Anadolu Univ, Dept Mat Sci & Engn, Iki Eylul Campus, TR-26480 Eskisehir, Turkey
关键词
composites; foams; kinetics; polyurethanes; rheology; MECHANICAL-PROPERTIES; PERCOLATION-THRESHOLD; ASPECT-RATIO; NANOCOMPOSITES; MORPHOLOGY; DISPERSION;
D O I
10.1002/app.43658
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Effects of different types and shapes of titanium dioxide, zinc oxide, and magnetite nanofillers on the rheological behavior of polyol/nanofiller suspensions, on the rigid polyurethane foam formation reaction, and hence on the final microstructure were investigated. The rheological percolation threshold of polyol/nanofiller suspensions decreased as the aspect ratio of nonspherical nanoparticles (platelet or rod) increased, regardless of the nanofiller type. The results of reaction kinetics showed that above a critical surface area (approximate to 30 m(2)), independently of nanofiller type, the reaction rate increased as the surface area increased. The introduction of oxide surfaces reduced the final cell size until a critical surface area (approximate to 30 m(2)). However, above this critical value cell size distribution gets wider and the cell size can no longer be correlated with the surface area. In the latter case, an increase of the reaction rate and the polymerization reaction being exothermic may facilitate uncontrolled cell nucleation, growth, and hence coalescence which results in an uncontrolled foam structure. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43658.
引用
收藏
页数:14
相关论文
共 40 条
[1]   In situ Foaming Evolution of Flexible Polyurethane Foam Nanocomposites [J].
Bernal, M. Mar ;
Angel Lopez-Manchado, Miguel ;
Verdejo, Raquel .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2011, 212 (09) :971-979
[2]   Polyurethane/clay nanocomposites foams: processing, structure and properties [J].
Cao, X ;
Lee, LJ ;
Widya, T ;
Macosko, C .
POLYMER, 2005, 46 (03) :775-783
[3]   Critical concentration in percolating systems containing a high-aspect-ratio filler [J].
Celzard, A ;
McRae, E ;
Deleuze, C ;
Dufort, M ;
Furdin, G ;
Mareche, JF .
PHYSICAL REVIEW B, 1996, 53 (10) :6209-6214
[4]   Extrusion of Linear Polypropylene-Clay Nanocomposite Foams [J].
Chaudhary, Amit Kumar ;
Jayaraman, Krishnamurthy .
POLYMER ENGINEERING AND SCIENCE, 2011, 51 (09) :1749-1756
[5]   Polymer nanocomposite foams [J].
Chen, Limeng ;
Rende, Deniz ;
Schadler, Linda S. ;
Ozisik, Rahmi .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (12) :3837-3850
[6]   Synthesis and Investigation of Glycolysates and Obtained Polyurethane Elastomers [J].
Datta, Janusz .
JOURNAL OF ELASTOMERS AND PLASTICS, 2010, 42 (02) :117-127
[7]   Mechanical properties and morphology of nano-reinforced rigid PU foam [J].
Dolomanova, Viktoriya ;
Rauhe, Jens Chr. M. ;
Jensen, Lars Rosgaard ;
Pyrz, Ryszard ;
Timmons, Ana Barros .
JOURNAL OF CELLULAR PLASTICS, 2011, 47 (01) :81-93
[8]   Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property [J].
Gong, Qichun ;
Wu, Jinkui ;
Gong, Xinglong ;
Fan, Yanceng ;
Xia, Hesheng .
RSC ADVANCES, 2013, 3 (10) :3241-3248
[9]  
Grünbauer HJM, 2004, POLYMER FOAMS SER, P253
[10]   Probing Nanodispersions of Clays for Reactive Foaming [J].
Harikrishnan, G. ;
Lindsay, Chris I. ;
Arunagirinathan, M. A. ;
Macosko, Christopher W. .
ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (09) :1913-1918