Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms

被引:21
作者
Allouche, JP
Zamboni, LQ
机构
[1] CNRS, LRI, F-91405 Orsay, France
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1006/jnth.1997.2207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a positive real number whose binary expansion is a fixed point of a morphism on the alphabet {O, 1} that is either of constant length greater than or equal to 2 or primitive is either rational or transcendental. (C) 1998 Academic Press.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 13 条
[1]   A CHARACTERIZATION OF OVERLAP-FREE MORPHISMS [J].
BERSTEL, J ;
SEEBOLD, P .
DISCRETE APPLIED MATHEMATICS, 1993, 46 (03) :275-281
[2]  
Champernowne D.G., 1933, J LOND MATH SOC, V8, P254, DOI [DOI 10.1112/JLMS/S1-8.4.254, 10.1112/jlms/s1-8.4.254]
[3]  
DEKKING FM, 1977, CR ACAD SCI I-MATH, V285, P157
[4]   Transcendence of numbers with a low complexity expansion [J].
Ferenczi, S ;
Mauduit, C .
JOURNAL OF NUMBER THEORY, 1997, 67 (02) :146-161
[5]  
LOXTON JH, 1988, J REINE ANGEW MATH, V392, P57
[6]   Arithmetic characteristics of category of functional equation solution [J].
Mahler, K .
MATHEMATISCHE ANNALEN, 1929, 101 :342-366
[7]  
Mahler K, 1937, P K AKAD WET-AMSTERD, V40, P421
[8]  
MAHLER K, 1961, LECT DIOPHANTINE A 1
[9]  
MAHLER K, 1930, J NUMBER THEORY, V103, P532
[10]  
QUEFFELEC M, 1987, LECT NOTES MATH, V1294