The structure of projective maps between real projective manifolds

被引:0
作者
Zimmer, Andrew M. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Real projective manifolds; Normal families; Hilbert metric; Kobayashi metric;
D O I
10.1007/s10711-017-0229-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the set of projective maps between compact properly convex real projective manifolds. We show that this set contains only finitely many distinct homotopy classes and each homotopy class has the structure of a real projective manifold. When domain is irreducible and the target is strictly convex, our results imply that each non-trivial homotopy class contains at most one projective map. These results are motivated by the theory of holomorphic maps between compact complex manifolds.
引用
收藏
页码:81 / 102
页数:22
相关论文
共 25 条
[1]  
ANDERSSON M, 2004, COMPLEX CONVEXITY AN, V225
[2]  
[Anonymous], 2008, Adv. Lect. Math. (ALM)
[3]  
[Anonymous], 1967, Math. Notes
[4]  
Ballas S.A., ARXIV E PRINTS
[5]   Convexes divisibles IV : Structure du bord en dimension 3 [J].
Benoist, Y .
INVENTIONES MATHEMATICAE, 2006, 164 (02) :249-278
[6]  
Benoist Y, 2003, PUBL MATH, V97, P181, DOI 10.1007/s10240-003-0012-4
[7]   Automorphisms of convex cones [J].
Benoist, Y .
INVENTIONES MATHEMATICAE, 2000, 141 (01) :149-193
[8]  
Benoist Y., 2004, Tata Inst. Fund. Res. Stud. Math, V17, P339
[9]   GROUPS ON ANALYTIC MANIFOLDS [J].
BOCHNER, S ;
MONTGOMERY, D .
ANNALS OF MATHEMATICS, 1947, 48 (03) :659-669
[10]   VECTOR FIELDS AND RICCI CURVATURE [J].
BOCHNER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (09) :776-797