Moment Problem and Entropy Convergence: A Unified Approach

被引:0
|
作者
Milev, Mariyan [1 ]
Tagliani, Aldo [2 ]
机构
[1] Univ Food Technol, Dept Math & Phys, Plovdiv 4002, Bulgaria
[2] Univ Trento, Dept Econ & Management, I-38100 Trento, Italy
来源
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20) | 2021年 / 2333卷
关键词
MAXIMUM-ENTROPY; HAMBURGER;
D O I
10.1063/5.0041779
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Hausdorff, Hamburger and Stieltjes moment problem and the sequence of maximum entropy (MaxEnt) approximates with given moments are considered. Thanks to MaxEnt formalism it is proved, through a unified procedure, MaxEnt approximate converges in entropy to the unknown distribution when the Hausdorff, Hamburger or Stieltjes moment problem are determinate and the underlying distribution has finite or (minus) infinite entropy.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] On the highest order moment closure problem
    Kosik, R
    Grasser, T
    Entner, R
    Dragosits, K
    27th International Spring Seminar on Electronics Technology, Books 1-3, Conference Proceedings: MEETING THE CHALLENGES OF ELECTRONICS TECHNOLOGY PROGRESS, 2004, : 118 - 121
  • [22] Chebyshev moment problems: Maximum entropy and kernel polynomial methods
    Silver, RN
    Roeder, H
    Voter, AF
    Kress, JD
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 187 - 194
  • [23] A REGULARIZED ENTROPY-BASED MOMENT METHOD FOR KINETIC EQUATIONS
    Alldredge, Graham W.
    Frank, Martin
    Hauck, Cory D.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (05) : 1627 - 1653
  • [24] Stieltjes moment problem via fractional moments
    Inverardi, PN
    Petri, A
    Pontuale, G
    Tagliani, A
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (03) : 664 - 677
  • [25] Hausdorff moment problem via fractional moments
    Inverardi, PN
    Pontuale, G
    Petri, A
    Tagliani, A
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (01) : 61 - 74
  • [26] A unified approach to computational drug discovery
    Tseng, Chih-Yuan
    Tuszynski, Jack
    DRUG DISCOVERY TODAY, 2015, 20 (11) : 1328 - 1336
  • [27] A NEW ENTROPY-VARIABLE-BASED DISCRETIZATION METHOD FOR MINIMUM ENTROPY MOMENT APPROXIMATIONS OF LINEAR KINETIC EQUATIONS
    Leibner, Tobias
    Ohlberger, Mario
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (06): : 2567 - 2608
  • [28] GENERAL MOMENT SYSTEM FOR PLASMA PHYSICS BASED ON MINIMUM ENTROPY PRINCIPLE
    Mallet, Jessy
    Brull, Stephane
    Dubroca, Bruno
    KINETIC AND RELATED MODELS, 2015, 8 (03) : 533 - 558
  • [29] Optimized approach to maximum entropy
    Alter-Gartenberg, R
    Park, SK
    NONLINEAR IMAGE PROCESSING IX, 1998, 3304 : 2 - 13
  • [30] Optimization and large scale computation of an entropy-based moment closure
    Garrett, C. Kristopher
    Hauck, Cory
    Hill, Judith
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 573 - 590