Quantum algebra Uq(gl(3)) and nonlinear optics

被引:1
作者
Gruber, B [1 ]
Smirnov, YF
Kharitonov, YI
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
[2] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow 119899, Russia
[3] Russian Acad Sci, St Petersburg Inst Nucl Phys, Gatchina 188350, Russia
基金
俄罗斯基础研究基金会;
关键词
nonlinear optics; quantum groups; indecomposable representations;
D O I
10.1023/A:1022569409239
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Indecomposable representations are investigated for the U-q(gl(3)) quantum algebra. The matrix elements are explicitly determined for the elementary representation is and the extremal vectors which characterize invariant subspaces are given in explicit form. Quotient spaces are used to derive other representations from the elementary representations. including the finite-dimensional irreducible representations and infinite-dimensional representations which are bounded above. Applications to nonlinear-optical phenomena are discussed.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 25 条
[1]  
Bernstein I.N, 1971, FUNKC ANAL PRILOZH, V5, P1, DOI 10.1007/BF01075841
[2]   A REMARKABLE REPRESENTATION OF 3 + 2 DE SITTER GROUP [J].
DIRAC, PAM .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (07) :901-&
[3]   SINGULAR VECTORS OF QUANTUM GROUP-REPRESENTATIONS FOR STRAIGHT LIE-ALGEBRA ROOTS [J].
DOBREV, VK .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (04) :251-266
[4]   ON DIS AND RACS [J].
FLATO, M ;
FRONSDAL, C .
PHYSICS LETTERS B, 1980, 97 (02) :236-240
[5]   ELEMENTARY-PARTICLES IN A CURVED SPACE .4. MASSLESS PARTICLES [J].
FRONSDAL, C .
PHYSICAL REVIEW D, 1975, 12 (12) :3819-3830
[6]  
GELFAND IM, 1968, USP MAT NAUK, V23, P3
[7]   MULTIPLICITY FREE AND FINITE MULTIPLICITY INDECOMPOSABLE REPRESENTATIONS OF ALGEBRA SU(1,1) [J].
GRUBER, B ;
KLIMYK, AU .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2009-2017
[8]   INDECOMPOSABLE REPRESENTATIONS OF A2(SU3,SU2,1) AND REPRESENTATIONS INDUCED BY THEM [J].
GRUBER, B ;
KLIMYK, AU ;
SMIRNOV, YF .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1982, 69 (02) :97-127
[9]   PROPERTIES OF LINEAR REPRESENTATIONS WITH A HIGHEST WEIGHT FOR SEMISIMPLE LIE-ALGEBRAS [J].
GRUBER, B ;
KLIMYK, AU .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (09) :1816-1832
[10]  
Jacobson N., 1979, Lie algebras