Roundedness and decay property in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation

被引:41
作者
Liu, Ji [1 ]
Wang, Yifu [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
关键词
Keller-Segel-Stokes system; Nonlinear diffusion; Tensor-valued sensitivity; Boundedness; Logistic source; Decay property; TIME BLOW-UP; GLOBAL EXISTENCE; CHEMOTAXIS SYSTEM; BOUNDEDNESS; MODEL; AGGREGATION; FINITE; BEHAVIOR;
D O I
10.1016/j.jde.2016.03.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Keller-Segel-Stokes system {n(t) - u . del n = del . (D(n)del n) - del . (nS(x,n,c)del c) + xi n - mu n(2), c(t) + u . del c = Delta c -c + n, u(t) +del P = Delta u + n del phi, del . u = 0 in a bounded domain Omega subset of R-3 with smooth boundary, where phi is an element of W-1,W- infinity(Omega), D is a given function satisfying D(n) >= C(D)n(m-1) for all n > 0 with certain C-D > 0, and S is a given function with values in R-3x3 which fulfills vertical bar S(x, n, c)vertical bar <= C-S(1 + n)(-alpha) with some C-S > 0 and alpha > 0. It is proved that under the conditions m >= 1/3 and alpha > 6/5 - m, and proper regularity hypotheses on the initial data, the corresponding initial boundary problem possesses at least one global bounded weak solution. In addition, it is shown that xi = 0 then all solution components satisfy n(., t) ->*0, c(., t) -> 0 and u(., t) -> 0 in L-infinity(Omega) as t -> infinity. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:967 / 999
页数:33
相关论文
共 41 条
[1]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[2]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[3]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[4]   Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) :237-242
[5]   Reaction terms avoiding aggregation in slow fluids [J].
Espejo, Elio ;
Suzuki, Takashi .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 :110-126
[6]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[7]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633
[8]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[9]   Global existence for a parabolic chemotaxis model with prevention of overcrowding [J].
Hillen, T ;
Painter, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) :280-301
[10]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107