The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces

被引:4
作者
Guan, Xiaoyan [1 ,2 ]
Wang, Shaoli [1 ,2 ]
Lv, Ye [1 ,2 ]
Xu, Fuyi [1 ,3 ]
机构
[1] State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
[2] Natl Ctr Efficient Irrigat Engn & Technol Res Bei, Beijing 100048, Peoples R China
[3] Shandong Univ Technol, Sch Sci, Zibo 255049, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Besov spaces; Chemotaxis model; Convergence rates; COMPRESSIBLE NAVIER-STOKES; WELL-POSEDNESS; EQUATIONS; SYSTEM; AGGREGATION; MOTION;
D O I
10.1007/s10440-015-0031-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the Cauchy problem to the multi-dimensional () chemotaxis model. We prove the optimal convergence rates of the strong solutions to the system for initial data close to a stable equilibrium state in critical Besov spaces. Our main ideas are based on the low-high frequency decomposition and the smooth effect of dissipative operator.
引用
收藏
页码:91 / 104
页数:14
相关论文
共 30 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[2]  
Chemin J. -Y., 1998, Perfect Incompressible Fluids
[3]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173
[4]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[5]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[6]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[7]  
Guo J, 2009, ACTA MATH SCI, V29, P629
[8]   Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces [J].
Hao, Chengchun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05) :825-834
[9]   Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces [J].
Haspot, Boris .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) :2262-2295
[10]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676