Persistence of travelling fronts of KdV-Burgers-Kuramoto equation

被引:7
作者
Fu, Yanggeng [1 ]
Liu, Zhengrong [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
KdV-Burgers-Kuramoto equation; Travelling fronts; Fenichel's theory; Persistence; NONLINEAR EQUATIONS; WAVES; INSTABILITY; EXISTENCE; MODEL;
D O I
10.1016/j.amc.2010.03.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the travelling fronts of KdV-Burgers-Kuramoto equation from geometric singular perturbation point of view. Motivated by the analogue between travelling fronts and heteroclinic orbits of the corresponding ordinary differential equations, we prove the persistence of these waves for sufficiently small dissipation. The result of numerical investigation also establishes our analysis. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2199 / 2206
页数:8
相关论文
共 25 条
[1]  
[Anonymous], COMPUTING
[2]   Travelling fronts for the KPP equation with spatio-temporal delay [J].
Ashwin, P ;
Bartuccelli, MV ;
Bridges, TJ ;
Gourley, SA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :103-122
[3]   THE NUMERICAL COMPUTATION OF CONNECTING ORBITS IN DYNAMIC-SYSTEMS [J].
BEYN, WJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (03) :379-405
[4]   NONLINEAR SATURATION OF DISSIPATIVE TRAPPED-ION MODE BY MODE-COUPLING [J].
COHEN, BI ;
KROMMES, JA ;
TANG, WM ;
ROSENBLUTH, MN .
NUCLEAR FUSION, 1976, 16 (06) :971-992
[5]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[6]   The existence of solitary waves of singularly perturbed mKdV-KS equation [J].
Fan, XH ;
Tian, LX .
CHAOS SOLITONS & FRACTALS, 2005, 26 (04) :1111-1118
[7]   The first-integral method to study the Burgers-Korteweg-de Vries equation [J].
Feng, ZS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02) :343-349
[9]   New exact solutions to the KdV-Burgers-Kuramoto equation [J].
Fu, ZT ;
Liu, SK ;
Liu, SD .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :609-616
[10]  
GUO B, 2004, NONLINEAR SCI NUMER, V9, P431