Polyyne Chain Growth and Ring Collapse Drives Ni-Catalyzed SWNT Growth: A QM/MD Investigation

被引:39
作者
Page, Alister J. [3 ]
Irle, Stephan [1 ,2 ]
Morokuma, Keiji [3 ,4 ,5 ]
机构
[1] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648602, Japan
[2] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan
[3] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[4] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
[5] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
关键词
WALLED CARBON NANOTUBES; MOLECULAR-DYNAMICS SIMULATIONS; NUCLEATION; IRON; MECHANISM; CLUSTERS; COBALT; ENERGY;
D O I
10.1021/jp100790e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A mechanism describing Ni-38-catalyzed single-walled carbon nanotube (SWNT) growth has been elucidated using quantum mechanical molecular dynamics (QM/MD) methods. This mechanism is dominated by the existence of extended polyyne structures bound to the base of the initial SWNT cap-fragment. Polygonal ring formation, and hence SWNT growth itself, was driven by the continual, simultaneous extension of these polyyne chains and subsequent "ring collapse" (i.e., self-isomerization/interaction of these polyyne chains). The rate of the former exceeded that of the latter, and so this mechanism was self-perpetuating. Consequently, the observed kinetics of Ni38-catalyzed SWNT growth were increased substantially compared to those observed using other transition metal catalysts of comparable size.
引用
收藏
页码:8206 / 8211
页数:6
相关论文
共 30 条
[1]   Interaction of carbon clusters with Ni(100): Application to the nucleation of carbon nanotubes [J].
Amara, H. ;
Bichara, C. ;
Ducastelle, F. .
SURFACE SCIENCE, 2008, 602 (01) :77-83
[2]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[3]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[4]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[5]   The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes [J].
Ding, Feng ;
Larsson, Peter ;
Larsson, J. Andreas ;
Ahuja, Rajeev ;
Duan, Haiming ;
Rosen, Arne ;
Bolton, Kim .
NANO LETTERS, 2008, 8 (02) :463-468
[6]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[7]   Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes [J].
Huang, ZP ;
Wang, DZ ;
Wen, JG ;
Sennett, M ;
Gibson, H ;
Ren, ZF .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (03) :387-391
[8]   ANNEALING CARBON CLUSTER IONS - A MECHANISM FOR FULLERENE SYNTHESIS [J].
HUNTER, JM ;
FYE, JL ;
ROSKAMP, EJ ;
JARROLD, MF .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (07) :1810-1818
[9]   SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER [J].
IIJIMA, S ;
ICHIHASHI, T .
NATURE, 1993, 363 (6430) :603-605
[10]   The C60 formation puzzle "solved":: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism [J].
Irle, Stephan ;
Zheng, Guishan ;
Wang, Zhi ;
Morokuma, Keiji .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (30) :14531-14545