Fractional diffusion equations by the Kansa method

被引:207
作者
Chen, Wen [1 ]
Ye, Linjuan [1 ]
Sun, Hongguang [1 ]
机构
[1] Hohai Univ, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomalous diffusion; Time fractional derivative; Kansa method; Radial basis function; FINITE-DIFFERENCE APPROXIMATIONS; MESHLESS METHODS; DISPERSION; COLLOCATION;
D O I
10.1016/j.camwa.2009.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study makes the first attempt to apply the Kansa method in the solution of the time fractional diffusion equations, in which the MultiQuadrics and thin plate spline serve as the radial basis function. In the discretization formulation, the finite difference scheme and the Kansa method are respectively used to discretize time fractional derivative and spatial derivative terms. The numerical solutions of one- and two-dimensional cases are presented and discussed, which agree well with the corresponding analytical solution. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1614 / 1620
页数:7
相关论文
共 31 条
[1]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   Anomalous diffusion and fractional advection-diffusion equation [J].
Chang, FX ;
Chen, J ;
Huang, W .
ACTA PHYSICA SINICA, 2005, 54 (03) :1113-1117
[4]   Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation [J].
Chen, Chang-ming ;
Liu, F. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :754-769
[5]  
[陈景华 CHEN Jinghua], 2007, [厦门大学学报. 自然科学版, Journal of Xiamen University. Natural Science], V46, P616
[6]   Time-space fabric underlying anomalous diffusion [J].
Chen, W .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :923-929
[7]   A speculative study of 2/3-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures [J].
Chen, Wen .
CHAOS, 2006, 16 (02)
[8]   Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[9]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[10]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143