Negative Differential Resistance in Carbon-Based Nanostructures

被引:19
作者
Evlashin, S. A. [1 ]
Tarkhov, M. A. [2 ]
Chernodubov, D. A. [3 ]
Inyushkin, A. V. [3 ]
Pilevsky, A. A. [4 ]
Dyakonov, P. V. [1 ,4 ]
Pavlov, A. A. [2 ]
Suetin, N. V. [4 ]
Akhatov, I. S. [1 ]
Perebeinos, V. [5 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Design Mfg & Mat, Moscow 121205, Russia
[2] Russian Acad Sci, Inst Nanotechnol Microelect, Moscow 119991, Russia
[3] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
[4] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[5] SUNY Buffalo, Univ Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
关键词
ROOM-TEMPERATURE; CURRENT-DENSITY; CONDUCTANCE; NANOWALLS; HETEROSTRUCTURES; OSCILLATIONS; TRANSITION; HEAT;
D O I
10.1103/PhysRevApplied.15.054057
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices over the last more than half a century. Here, we report NDR behavior formation in randomly oriented graphenelike nanostructures up to 37 K and high on-current density up to 105 A/cm2. Our modeling of the current-voltage characteristics, including the self-heating effects, suggests that strong temperature dependence of the low-bias resistance is responsible for the nonlinear electrical behavior. Our findings open opportunities for the practical realization of the on-demand NDR behavior in nanostructures of two- and three-dimensional material-based devices via heat management in the conducting films and the underlying substrates.
引用
收藏
页数:10
相关论文
共 71 条
[41]  
Mishchenko A, 2014, NAT NANOTECHNOL, V9, P808, DOI [10.1038/nnano.2014.187, 10.1038/NNANO.2014.187]
[42]  
Mizuta H., 1995, PHYS APPL RESONANT T
[43]   Temperature dependence of lattice vibrations and analysis of the specific heat of graphite [J].
Nihira, T ;
Iwata, T .
PHYSICAL REVIEW B, 2003, 68 (13)
[44]  
Park, 2020, SELECTOR DEVICES EME, P135, DOI [10.1016/B978-0-08-102782-0.00005-8, DOI 10.1016/B978-0-08-102782-0.00005-8]
[45]   Multistate Memory Devices Based on Free-standing VO2/TiO2 Microstructures Driven by Joule Self-Heating [J].
Pellegrino, Luca ;
Manca, Nicola ;
Kanki, Teruo ;
Tanaka, Hidekazu ;
Biasotti, Michele ;
Bellingeri, Emilio ;
Siri, Antonio Sergio ;
Marre, Daniele .
ADVANCED MATERIALS, 2012, 24 (21) :2929-2934
[46]  
Perrin ML, 2014, NAT NANOTECHNOL, V9, P830, DOI [10.1038/NNANO.2014.177, 10.1038/nnano.2014.177]
[47]   Negative differential resistance effect in planar graphene nanoribbon break junctions [J].
Phuong Duc Nguyen ;
Thanh Cong Nguyen ;
Hossain, Faruque M. ;
Duc Hau Huynh ;
Evans, Robin ;
Skafidas, Efstratios .
NANOSCALE, 2015, 7 (01) :289-293
[48]   Negative differential conductance and hot phonons in suspended nanotube molecular wires [J].
Pop, E ;
Mann, D ;
Cao, J ;
Wang, Q ;
Goodson, KE ;
Dai, HJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[49]   Thermal conductance of an individual single-wall carbon nanotube above room temperature [J].
Pop, E ;
Mann, D ;
Wang, Q ;
Goodson, KE ;
Dai, HJ .
NANO LETTERS, 2006, 6 (01) :96-100
[50]   The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes [J].
Pradhan, N. R. ;
Duan, H. ;
Liang, J. ;
Iannacchione, G. S. .
NANOTECHNOLOGY, 2009, 20 (24)